Skip to main content

PTH Increases Ca++ Transport in Rat Brain Synaptosomes in Uremia

  • Chapter
New Actions of Parathyroid Hormone

Abstract

Central nervous system (CNS) dysfunction is a major complication of patients with end stage renal failure. The clinical manifestations of this disorder are well described in several recent reviews (1). The biochemical basis for the CNS dysfunction of uremia is not well understood and is not completely corrected by dialysis. Studies of the CNS in humans and animals with renal failure have revealed no consistent pathologic changes (2) and biochemical studies in the brain of animal models of renal failure have also been generally unrevealing. The brain content of several ions (Na, K, Mg, Cl, bicarbonate) and water are normal (2,3), and so is brain intracellular pH (pHi) (3). Brain content of high-energy phosphate compounds (ATP, phosphocreatine) is also normal, although their turnover rate appears to be decreased (4). It appears that there may be altered permeability of the uremic brain to certain molecules, such as sodium, potassium, and inulin (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. E. Teschan, A. I. Arieff, Uremic and dialysis encephalopathies, in: “Cerebral Energy Metabolism and Metabolic Encephalopathy”, D. W. McCandless, ed., Plenum Publishing Corp. New York (1985).

    Google Scholar 

  2. A. I. Arieff, Effects of water, electrolyte and acid base disorders on the central nervous system, in:″Fluid, Electrolyte and Acid-Base Disorders″, A. I. Arieff, R. A. DeFronzo, ed., Churchill Livingstone. New York (1985).

    Google Scholar 

  3. C. A. Mahoney, A. I. Arieff, Central and peripheral nervous system effects of chronic renal failue, Kidney Int. 24: 170–177 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. C.A. Mahoney, P. Sarnacki, A. I. Arieff, Uremic encephalopathy: Role of brain energy metabolism, Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F527–F532 (1984).

    PubMed  CAS  Google Scholar 

  5. R. A. Fishman, Permeability changes in experimental uremic encephalopathy, Arch. Int. Med. 126: 835 (1970).

    CAS  Google Scholar 

  6. A. I. Arieff, S. G. Massry, Calcium metabolism of brain in acute renal failure: effects of uremia, hemodialysis and parathyroid hormone, J. Clin. Invest. 53: 387–392 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. R. Guisado, A. I. Arieff, S. G. Massry, Changes in the electroencephalogram in acute uremia: Effects of parathyroid hormone and brain electrolytes, J. Clin. Invest. 55: 738–745 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. J. D. Cooper, V. C. Lazarowitz, A. I. Arieff, Neurodiagnostic abnormalities in patients with acute renal failure. Evidence for neurotoxicity of parathyroid hormone, J. Clin. Invest. 61: 1448–1455 (1978).

    Article  PubMed  CAS  Google Scholar 

  9. A. C. Alfrey, G. R. LeGrande, W. D. Kaehny, The dialysis encephalopathy syndrome. Possible aluminum intoxication, N. Engl. J. Med. 294: 184–188 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. M. G. Cogan, C. Covey, A. I. Arieff, A. Wisnieski, O. Clark, V. C. Lazorowitz, W. Leach, Central nervous system manifestations of hyperparathyroidism, Amer. J. Med. 65: 963 (1978).

    Article  CAS  Google Scholar 

  11. L. G. Welt, J. R. Sachs and T. J. McManus, An ion transport defect in erythrocytes from uremic patients, Trans. Assoc Am. Phys. 77: 169–181 (1964).

    CAS  Google Scholar 

  12. C. H. Cole, J. W. Balfe and L. G. Welt, Induction of an ouabain-sensitive ATPase defect by uremic plasma, Trans. Assoc. Am. Phys. 81: 213–220 (1968).

    PubMed  CAS  Google Scholar 

  13. J. W. Woods, J. C. Parker, B. S. Watson, Perturbation of sodium-lithium countertransport in red cells, N. Engl. J. Med. 308: 1258–1261 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. S. Van den Noort, R. E. Eckel, K. Brine, J. T. Hrdlicka, Brain metabolism in uremic and adenosine-infused rates, J. Clin. Invest. 47: 2133–2142 (1968).

    Article  Google Scholar 

  15. L. Minkoff, M. Gaertner, C. Darah, C. Mercier, M. L. Levin, Inhibition of brain sodium-potassium ATPase in uremic rats, J. Lab. Clin. Med. 80: 71–78 (1972).

    PubMed  CAS  Google Scholar 

  16. C. L. Fraser, P. Sarnacki, A. I. Arieff, Abnormal sodium transport in synaptosomes from brain of uremic rats, J. Clin. Invest. 75: 2014–2023 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. V. P. Whittaker, I. A. Michaelson, R. Jeanette, A. Kirkland, The separation of synaptic vesicles from nerve ending particles (synaptosomes), Biochem. J. 90: 293–303 (1964).

    PubMed  CAS  Google Scholar 

  18. E. G. Gray and V. P. Whittaker, The isolation of nerve endings from brain, J. Anat. 96: 79–87 (1962).

    PubMed  CAS  Google Scholar 

  19. E. De Robertis, Ultrastructure and cytochemistry of the synaptic region, Science. 156: 907–914 (1967).

    Google Scholar 

  20. V. P. Whittaker, The synaptosome, in:“Handbook of Neurochemistry”, A. Lajtha, ed., Plenum Press. New York (1969).

    Google Scholar 

  21. L. D. Lewis, U. Ponten and B. K. Siesjo, Arterial acid-base changes in unanesthetized rats in acute hypoxia, Respir. Physiol. 19: 312–321 (1973).

    Article  CAS  Google Scholar 

  22. A. Pastuszko, D. F. Wilson, M. Erecinska, I. A. Silver, Effects of in vitro and lowered pH on potassium fluxes and energy metabolism in rat brain synaptosomes, J. Neurochem. 36: 116–123 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. M. P. Blaustein, C. J. Oborn, The influence of sodium and calcium fluxes in pinched-off nerve terminals in vitro, J. Physiol. 247: 657–686 (1975).

    PubMed  CAS  Google Scholar 

  24. P. Kalix, Uptake, release of calcium in rabbit vagus nerve, Pflugers Arch. ges. Physiol. 326: 1–14 (1971).

    Google Scholar 

  25. H. Reuter and N. Seitz, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. 195: 451–470 (1968).

    PubMed  CAS  Google Scholar 

  26. M. P. Blaustein, A. L. Hodgkin, The effect of cynamine on the efflux of calcium from squid axon, J. Physiol. (Lond.). 200: 497–527 (1969).

    CAS  Google Scholar 

  27. M. L. Michaelis, E. K. Michaelis, Ca++ fluxes in resealed synaptic plasma membrane vesicles, Life Sci. 28: 37–45 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. E. Carafoli, S. Longoni, The plasma membrane in the control of the signalling function of calcium, in:″Cell Calcium and the Control of Membrane Transport″, L. J. Mandel, D. C. Eaton, ed., The Rockefeller University Press. New York (1987).

    Google Scholar 

  29. C. L. Fraser, P. Sarnacki, A. I. Arieff, Calcium transport abnormality in uremic rat brain synaptosomes, J. Clin. Invest. 76: 1789–1795 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. O. H. Lowery, N. J. Rosenberg, A. L. Farr, R. J. Randall, Protein measurements with Folin-phenol reagent, J. Biol. Chem. 193: 265–275 (1951).

    Google Scholar 

  31. E. Padan, D. Zilberstein, H. Rottenberg, The proton electrochemical gradient in escherichia coli cells, Eur. J. Biochem. 63: 533–541 (1976).

    Article  PubMed  CAS  Google Scholar 

  32. H. U. Bergmeyer, H. Klotzsch, H. Mollering, M. Nelbock-Hochstetter, K. Beauchamp, Biochemical reagents (Section D), in:“Methods of Enzymatic Analysis”, H. U. Bergmeyer, ed., Academic Press. New York (1965).

    Google Scholar 

  33. A. Causton, B. Chorlton, G. A. Rose, An improved assay for parathyroid hormone, observing the rise of serum calcium in thyroparathyroidectomized rats, J. Endocrinol. 33: 1–12 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. C. Deutch, C. Drown, U. Rafalowska, I. A. Silver, Synaptosomes from rat brain: morphology, compartmentation, and transmembrane pH and electrical gradients, J. Neurochem. 36: 2062–2072 (1981).

    Google Scholar 

  35. J. W. Gurd, L. R. Jones, H. R. Mahler, W. J. Moore, Isolation and partial characterization of rat brain synaptic plasma membranes, J. Neurochem. 22: 281–290 (1974).

    Article  PubMed  CAS  Google Scholar 

  36. D. S. Beattie, Enzyme localization in the inner and outer membranes of rat liver mitochondria, Biochem. Biophys Res Commun. 31: 901–907 (1968).

    Article  CAS  Google Scholar 

  37. M. K. Johnson, V. P. Whittaker, Lactate dehydrogenase as a cytosolic marker in brain, Biochem. J. 88: 404–409 (1963).

    PubMed  CAS  Google Scholar 

  38. A. Jayakumar, L. Cheng, C. T. Liang, B. Sacktor, Sodium gradient-dependent calcium uptake in renal basolateral membrane vesicles, J. Biol. Chem. 259 (17): 10827–10833 (1984).

    PubMed  CAS  Google Scholar 

  39. S. Khalifa, S. Mills, K. A. Hruska, Stimulation of calcium uptake by parathyroid hormone in renal brush-border membrane vesicles, J. Biol. Chem. 258 (23): 14400–14406 (1983).

    PubMed  CAS  Google Scholar 

  40. K. A. Hruska, M. Goligorsky, J. Scoble, M. Tsutsumi, S. Westbrook, D. Moskowitz, Effects of parathyroid hormone on cytosolic calcium in proximal tubular primary cultures, Am. J. Physiol. 251 (20): F188 – F198 (1986).

    PubMed  CAS  Google Scholar 

  41. J. E. Scoble, S. Mills, K. A. Hruska, Calcium transport in canine renal basolateral membrane vesicles; effects of parathyroid hormone, J. Clin. Invest. 75: 1096–1105 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Fraser, C.L., Arieff, A.I. (1989). PTH Increases Ca++ Transport in Rat Brain Synaptosomes in Uremia. In: Massry, S.G., Fujita, T. (eds) New Actions of Parathyroid Hormone. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0567-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0567-5_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7870-2

  • Online ISBN: 978-1-4613-0567-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics