Skip to main content

Exact Valence-Bond Approach to Quantum Cell Models

  • Chapter
Interacting Electrons in Reduced Dimensions

Part of the book series: NATO ASI Series ((NSSB,volume 213))

Abstract

A line between two H atoms is a simple and natural shorthand for the covalent bond of H2. The extension to a line per spin-paired electrons in bonds provides a convenient and surprisingly powerful representation of molecular structure. Pauling’s valence bond (VB) diagrams1 are widely used throughout chemistry and increasingly in solid-state physics, from purely qualitative to quantitative applications. We emphasize in this paper the versatility of VB diagrams and their role in obtaining exact results for finite quantum cell models. Considerable progress has been made in the manipulation of VB diagrams.2 Quantitative applications now focus on model Hamiltonians that conserve total spin and on excited states rather than on ground-state molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pauling, J. Chem. Phys. 1, 280 (1933); L. Pauling and G. Wheland, ibid, 362 (1933).

    Article  ADS  Google Scholar 

  2. Z.G. Soos and S. Ramasesha, in Valence Bond Theory and Chemical Structure (eds. D.J. Klein and S. Trinajstic, Elsevier, Amsterdam) in press.

    Google Scholar 

  3. L. Pauling, Phys. Rev. 54, 899 (1938).

    Article  MATH  ADS  Google Scholar 

  4. P.W. Anderson, Science V235, 1196 (1987); G. Baskaran, Z. Zou, and P.W. Anderson, Solid State Commun. 63, 973 (1987).

    Article  ADS  Google Scholar 

  5. I. Affleck, T. Kennedy, E. Lieb and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987); Comm. Math. Phys. 115, 477 (1988); C.K. Majumdar and D.K. Ghosh, J. Math. Phys. 10, 1388 (1969); S.A. Alexander and D.J. Klein, Phys. Rev. B31, 574 (1985).

    Article  ADS  Google Scholar 

  6. Z.G. Soos and D.J. Klein, in Treatise on Solid State Chemistry, Vol. 3 (ed. N.B. Hannay, Plenum, New York, 1976 ) p. 679.

    Google Scholar 

  7. S. Ramasesha and Z.G. Soos, Int. J. Quant. Chem. 25, 1004 (1984).

    Article  Google Scholar 

  8. G. Rumer, Gottingen Nachr. Tech. 377 (1932).

    Google Scholar 

  9. S. Mazumdar and Z.G. Soos, Synth. Metals 1, 77 (1979).

    Article  Google Scholar 

  10. S.R. Bondeson and Z.G. Soos, Phys. Rev. B22, 1793 (1980); Z.G. Soos, S. Kuwajima and J.E. Mihalick, ibid, B32, 3124 (1985).

    ADS  Google Scholar 

  11. Z.G. Soos and S. Ramasesha, Phys. Rev. B29, 5410 (1984).

    ADS  Google Scholar 

  12. S. Ramasesha and Z.G. Soos, J. Chem. Phys. 80, 3279 (1984).

    Article  ADS  Google Scholar 

  13. K. Chang, I. Affleck, G.W. Hayden, and Z.G. Soos, J. Phys. C: Solid State Phys. (in press).

    Google Scholar 

  14. Z.G. Soos and S. Kuwajima, Chem. Phys. Lett. 122, 315 (1985); Z.G. Soos, S. Kuwajima, and R.H. Harding, J. Chem. Phys. 85, 601 (1986).

    Article  ADS  Google Scholar 

  15. Z.G. Soos and G.W. Hayden, in Electroresponsive Molecular and Polymeric Systems (ed. T.A. Skotheim, Marcel Dekker, New York, 1988) and references therein.

    Google Scholar 

  16. S.J. Lalama and A.F. Garito, Phys. Rev A20, 1179 (1979); A.F. Garito, K.Y. Wong and O. Zamani-Khamiri, in Nonlinear and Electroactive Polymers (eds. P.N. Prasad and D.R. Ulrich, Plenum, New York, 1988) p. 13; D. Li, M.A. Ratner, and T.J. Marks, J. Amer. Chem. Soc. 110, 1707 (1988).

    ADS  Google Scholar 

  17. S. Etemad, G.L. Baker, L. Rothberg, and F. Kajzar, Proc. Mat. Res. Soc. 109, 117 (1988).

    Google Scholar 

  18. S. Ramasesha and Z.G. Soos, Chem. Phys. Letters (in press); Z.G. Soos and S. Ramasesha, J. Chem. Phys. (in press).

    Google Scholar 

  19. S. Kuwajima and Z.G. Soos, J. Amer. Chem. Soc. 109, 107 (1987).

    Article  Google Scholar 

  20. G.W. Hayden, P. McWilliams, S. Ramasesha, and Z.G. Soos, in preparation.

    Google Scholar 

  21. D.C. Hanna, M.A. Yuratich, and D. Cotter, “Nonlinear Optics of Free Atoms and Molecules” ( Springer, Berlin, 1979 ).

    Google Scholar 

  22. C.P. DeMelo and R. Silbey, J. Chem. Phys. 88, 2558, 2567 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Soos, Z.G., Ramasesha, S., Hayden, G.W. (1989). Exact Valence-Bond Approach to Quantum Cell Models. In: Baeriswyl, D., Campbell, D.K. (eds) Interacting Electrons in Reduced Dimensions. NATO ASI Series, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0565-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0565-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7869-6

  • Online ISBN: 978-1-4613-0565-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics