Advertisement

Surface Image Measurements

  • John C. Russ

Abstract

In the preceding chapters, the assumption has been made in most cases that images are planar. Either they result from viewing a cut section through some opaque body, or they are the projection of objects onto a plane. Most of our experience in the real world is, of course, with neither of these restricted types of images. While still stopping well short of the complexity of real-world images, which contain a variety of surfaces and objects with great depth, it can be important and useful to relax the criterion of planar surfaces somewhat. There are many interesting surfaces that are approximately flat on a large scale, but locally quite rough. Examples range from the surface of integrated circuits, where strips of metallization or photoresist produce surface relief, to skin with its folds and wrinkles, to the surfaces of planets, with such relatively minor irregularities as mountains and oceans.

Keywords

Fractal Dimension Backscatter Electron Incident Electron Secondary Electron Image Signal Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.K. Atwood, D.C. Joy (1987) Improved Accuracy for SEM Linewidth Measurements Proc. SPIE 775 159–165Google Scholar
  2. W. Beil, I.C. Carlsen, V. Desai, L. Reimer (1989) Three-Dimensional Digital Surface Reconstruction in Scanning Electron Microscopy using Signals of a Multiple Detector System, European Journal of Cell Biology 48 Supplement 25,13–16Google Scholar
  3. A.C. Bovik, M. Clark, W.S. Geisler (1987) Computational Texture Analysis using Localized Spatial Filtering IEEE, Proc. of Workshop on Computer Vision, Dec 1987, Miami FL, 201–206Google Scholar
  4. R.A. Brooks (1981) Model-based Three Dimensional Interpretations of Two Dimensional Images Proc. 7th DCAI, Vancouver BC, 619-624Google Scholar
  5. R.A. Brooks (1983) Model-Based 3-D Interpretation of 2-D Images IEEE Trans. Patt. Recog. Mach. Intell. PAMI- 5#2 140–150CrossRefGoogle Scholar
  6. I.C. Carlsen (1985) Reconstruction of True Surface Topographies in Scanning Electron Microscopes Using Backscattered Electrons Scanning 7 169–177Google Scholar
  7. B. Carrihill, R. Hummel (1985) Experiments with the Intensity Ratio Depth Sensor Computer Vision, Graphics and Image Processing 32 337–358CrossRefGoogle Scholar
  8. P. Corcuff, J. deRigal, J.L. Leveque, S. Makki, P. Agache (1983) Skin Relief and Aging J. Soc. Cosmet. Chem. 34 177–190Google Scholar
  9. M. Coster, J-L. Chermant (1985) Precis D’Analyse D’lmages CNRS, ParisGoogle Scholar
  10. L.S. Davis, S.A. Johns, J.K. Aggarwal (1979) Texture Analysis using Generalized Co-Occurrence Matrices IEEE Trans Patt. Recog. and Mach. Intell. PAMI- 1 # 3 251CrossRefGoogle Scholar
  11. J. Feder (1988) Fractals Plenum Press, New York NYGoogle Scholar
  12. R.L.C. Flemmer, N.N. Clark (1987) Computer-Based Algorithms for Fractal Analysis of Surfaces citation to verbal presentation provided by B.H. KayeGoogle Scholar
  13. J. Frosien (1986) Digital image processing for micrometrology, J. Vac. Sci. Tech. B, 4 #1, 261–264CrossRefGoogle Scholar
  14. R.M. Haralick (1978) Statistical and Structural Approaches to Texture Proc 4th Intl Joint Conf Patt Recog, Kyoto, p. 45–69Google Scholar
  15. R.M. Haralick, K. Shanmugam, I. Dinstein (1973) Textural Features for Image Classification IEEE Trans. Syst. Man. Cybern., SMC- 3 610–621CrossRefGoogle Scholar
  16. B.K.P. Horn (1970) Shape from Shading: A method for obntaining the shape of a smooth opaque object from one view (Al Tech Report 79) Mass. Inst. Tech., Project MAC, Cambridge, MAGoogle Scholar
  17. B.K.P. Horn, M.J. Brooks (1986) The Variational Approach to Shape from Shading Computer Vision, Graphics and Image Processing 33 174–208CrossRefGoogle Scholar
  18. K. Ikeuchi, B.K.P. Horn (1981) Numerical shape from shading and occluding boundaries Artificial Intelligence (special issue on computer vision) 15,141–184Google Scholar
  19. M.E. Jernigan, F. D’Astous (1984) Entropy Based Texture Analysis in the Spatial Frequency Domain IEEE Trans. Patt. Anal. Mach. Intell. PAMI- 6. 237CrossRefGoogle Scholar
  20. D.C. Joy (1987a) A model for secondary and backscattered electron yields J. Microsc. 147.51CrossRefGoogle Scholar
  21. D.C. Joy (1987b) Image simulation for the SEM Microbeam Analysis 1987 (R. Geiss, ed.) San Francisco Press, 105-109Google Scholar
  22. A.E. Kayaalp, R.C. Jain (1987a) Model based inspection of integrated circuit patterns using the scanning electron microscope (SEM) Proc. SPIE 775 172–179Google Scholar
  23. A.E. Kayaalp, R.C. Jain (1987b) Using SEM stereo to extract semiconductor wafer pattern topography Proc. SPIE 775,18–26Google Scholar
  24. B.H. Kaye (1984) Multifractal description of a rugged fineparticle profile Particle Characterization 1 14–21CrossRefGoogle Scholar
  25. B.H. Kaye (1986) Proc. Particle Technology Conf., NurnbergGoogle Scholar
  26. J.R. Kender (1979) Shape from Texture: An aggregation transform that maps a class of textures into surface orientation Proceedings of the Sixth International Joint Conference on Artificial Intelligence, Tokyo, JapanGoogle Scholar
  27. R.B. Laibowitz, B.B. Mandelbrot, D.E. Passoja (ed.) (1985) Fractal Aspects of Materials Mat. Res. Soc., PittsburghGoogle Scholar
  28. L.I. Larking, P.J. Burt (1983) Multi-Resolution Texture Energy Measures Proc IEEE Comput. Soc. Conf. Vision Patt Recog Wash DC, p. 519Google Scholar
  29. H.C. Lee, K.S. Fu (1983) Three-Dimensional Shape from Contour and Selective Confirmation Computer Vision, Graphics and Image Processing 22 177–193CrossRefGoogle Scholar
  30. B.B. Mandelbrot (1983) The Fractal Geometry of Nature Freeman, New YorkGoogle Scholar
  31. J.J. Mecholsky, D.E. Passoja (1985) Fractals and Brittle Fracture in Fractal Aspects of Materials. Materials Research Society, PittsburghGoogle Scholar
  32. J.J. Mecholsky, T.J. Mackin, D.E. Passoja (1986) Crack Propagation in Brittle Materials as a Fractal Process in Fractal Aspects of Materials II (D.W. Schaefer et al., ed.) Materials Research Society, Pittsburg, PA)Google Scholar
  33. J.J. Mecholsky, D.E. Passoja, K.S. Feinberg-Ringel (1989) Quantitative Analysis of Brittle Fracture Surfaces Using Fractal Geometry J. Am. Ceram. Soc. 72 60–65CrossRefGoogle Scholar
  34. M. Miyoshi, Y. Yamazaki (1986) Topographic Contrast in Linewidth Measurement with SEM Japanese J. Electr. Microscopy 35, 149Google Scholar
  35. M. Miyoshi et al. (1986) A precise and automatic very large scale integrated circuit pattern linewidth measurement method using a scanning electron microscope J. Vac. Sci. Technol. B 4, 493–499CrossRefGoogle Scholar
  36. K. Monaghan, D. Gates, W. Mah, B. Richardson, J. Wilcox (1984) Effects due to topography and composition, Proc. SPIE 480 (Integrated Circuit Metrology II), 94-100Google Scholar
  37. D.E. Newbury (1987) Monte Carlo Electron Trajectory Simulations for Scanning Electron Microscopy and Microanalysis: An Overview Microbeam Analysis 1987 (R.H. Geiss, ed.) San Francisco Press, 110-114Google Scholar
  38. D. Nyyssonen, R.A. Larrabee (1987) Submicron Linewidth Metrology in the Optical Microscope J. Res. Nat. Bur. Stds. 92, 187Google Scholar
  39. D. Paumgartner, G. Losa, E.R. Weibel (1981) Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimension J. Microscopy 121 51–63CrossRefGoogle Scholar
  40. S. Peleg, J. Naor, R. Hartley, D. Avnir (1984) Multiple resolution texture analysis and classification, IEEE Trans Pat Anal Mach Intell PAMI - 6 # 4,518CrossRefGoogle Scholar
  41. A.P. Pendand (1983) Fractal-based description of natural scenes, Proc. IEEE Comput. Soc. Conf. Comput. Vision Pat Recog., Wash DC, 201-209; IEEE Trans Patt. Anal. Mach. Intell. PAMI- 6 661Google Scholar
  42. A.P. Pentland (1984) Local Shading Analysis IEEE Trans, Patt,Anal Mach. Intell. PAMI-6 #2, reprinted in From Pixels to Predicates (A.P. Pentland, ed.) 1986, Ablex, Norwood NJ, 40–77Google Scholar
  43. A.P. Pentland (1986) Shading into Texture in From Pixels to Predicates (A.P. Pentland, ed.) Ablex, Norwood NJ, 253–267Google Scholar
  44. M.T. Postek (1987) Submicrometer dimensional metrology in the scanning electron microscope Proc. SPIE775 166-171Google Scholar
  45. M. Postek, D.C. Joy (1987) Submicron Linewidth Dimensional Metrology in the SEM J. Res. Nat. Bur. Stds. 92, 205Google Scholar
  46. L. Reimer (1984)Journal of Microscopy 134 # 1. p. 1CrossRefGoogle Scholar
  47. L. Reimer, M. Riepenhausen, M. Schieijott (1986) Signal of Backscattered Electrons at Edges and Surface Steps in Dependence on Surface Tilt and Takeoff Direction Scanning 8 164–175CrossRefGoogle Scholar
  48. M.G. Rosenfield (1987) Analysis of linewidth measurement techniques using the low voltage SEM, Proc. SPIE 775 (Integrated Circuit Metrology, Inspection, and Process Control), 70–79Google Scholar
  49. J.C. Russ, J.C. Russ (1986) Shape and surface roughness characterization for particles and surfaces viewed in the SEM in Microbeam Analysis 1986 (A.D. Romig, ed.), San Francisco Press, 509Google Scholar
  50. J.C. Russ, J.C. Russ (1987a) Feature-specific measurement of surface roughness in SEM images, Particle Characterization, 4 (1987), 22–25CrossRefGoogle Scholar
  51. J.C. Russ, J.C. Russ (1987b) The SEM Interpretation of Fractal Surfaces, Proc. EMSA, San Francisco Press, 540-543Google Scholar
  52. L.M. Sander (1986) Fractal Growth Processes, Nature 322,789–793CrossRefGoogle Scholar
  53. H. Schwarz, H.E. Exner (1980) The implementation of the concept of fractal dimensions on a semi-automatic image analyzer Powder Tech. 27 207CrossRefGoogle Scholar
  54. H.E. Stanley, N. Ostrowsky (1986) On Growth and Form Nijhoff, Dordrecht, HollandGoogle Scholar
  55. C. Sun, W.G. Wee (1983) Neighboring Gray Level Dependence Matrix for Texture Classification CVGIP 23 341–352 more modelsGoogle Scholar
  56. K.A. Thompson (1987) Surface characterization by use of automated stereo analysis and fractals Microbeam Analysis 1987 (R.H. Geiss, ed.) San Francisco Press, 115-118Google Scholar
  57. F. Tomita, Y. Shirai, S. Tsuji (1982) Description of Textures by a Structural Analysis IEEE Trans Patt Anal Mach Intell PAMI- 4 #2,183CrossRefGoogle Scholar
  58. E.E. Underwood (1987) Stereological Analysis of Fracture Roughness Parameters Acta Stereologica 6 Suppl II, 169–178Google Scholar
  59. E.E. Underwood, K. Baneiji (1986) Fractals in Fractography Materials Science and Engineering 80 (1986) 1–14CrossRefGoogle Scholar
  60. A.P. Witkin (1981) Recovering surface shape and orientation from texture Artificial Intelligence 17,17–47CrossRefGoogle Scholar
  61. R.J. Woodham (1980) Photometric method for determining surface orientation from multiple images Optical Engineering 19 139–144Google Scholar
  62. R.J. Woodham (1981) Analysing Images of Curved Surfaces in Computer Vision (J.M. Brady, ed.) North Holland, Amsterdam, 117-140Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • John C. Russ
    • 1
  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations