Spin-Hole Model with Magnetic Vortex-Antivortex Pairing Mechanism for Doped La2CuO4

  • A. Robledo
  • C. Varea


The introduction of charge carriers in La2CuO4 can be achieved either by raising oxygen stoichiometry or by cation substitution, typically via the replacement of La+3 by Sr+2 or Ba+2 .1 The presence of charge carriers , which appear as electron holes on the CuO2 planes, has a profound effect on the properties of the system. Increasing their numbers beyond a low-lying threshold ( x≈0.06 in La2−xSrxCuO4) transforms the initial insulating (I) (and antiferromagnetic (AF) at low temperature) state into a metallic (M) ( superconductive (SC) at low temperature) state, and this exhibits an unusual, and not yet fully characterized, magnetic behavior .2 Doping induces, too, structural changes, the most aparent of which is a transformation from an orthorhombic (O) to a tetragonal (T) structure observable at temperatures as high as 530 K when close to the undoped limit. 1,2 There are indications of other, still incompletely resolved transformations,3 closer to , or within, the SC region of the phase diagram. The interplay between superconductivity, magnetism and structure in doped La2CuO4 is the focus of continuing investigations.


Correlation Length Localization Length Interlayer Coupling Neel Temperature Spin Glass Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Cheong, J.D. Thompson, and Z. Fisk, Physica C158, 109 (1989).Google Scholar
  2. 2.
    R.J. Birgeneau and G. Shirane, in Physical Properties of High Tempe­rature Superconductors, D.M. Ginsberg Ed. (World Scientific Publishing Co.) 1989.Google Scholar
  3. 3.
    J.D. Jorgensen et al, Phys. Rev. B 38, 11337 (1988);CrossRefGoogle Scholar
  4. J.D. Axe et al, Phys. Rev. Lett. 62, 2751 (1989).CrossRefGoogle Scholar
  5. 4.
    A. Robledo and C. Varea, Rev. Mex. Fis. 35, 255 (1989); in Conden­sed Matter Theories Vol. 4, J. Keller Ed. (Plenum Press) 1989; Phys. Rev. B (submitted).Google Scholar
  6. 5.
    Our model has many elements in common with earlier spin-hole models for the pairing of charges via magnetic interactions. See, for example, A. Aharony et al, Phys. Rev. Lett. 60, 1330 (1988)., and references therein.Google Scholar
  7. 6.
    D.R. Nelson and R.A. Pelcovits, Phys. Rev. B 16, 2191 (1977).CrossRefGoogle Scholar
  8. 7.
    C. Dekker, A.F.M. Arts, and H.W. de Wijn, Phys. Rev. B 38, 11512 (1988);CrossRefGoogle Scholar
  9. Y. Kimishima, et al., J. Phys. Soc. Jpn. 55, 3574 (1986);CrossRefGoogle Scholar
  10. K. Katsumata, et al., Phys. Rev. B 25, 428 (1982); ibid. 37, 356 (1988).CrossRefGoogle Scholar
  11. 8.
    A. Robledo and C. Varea, Int. J. Mod. Phys. B 1, 763 (1988).CrossRefGoogle Scholar
  12. 9.
    M.A. Kastner et al, Phys. Rev. B 37, 111 (1988).CrossRefGoogle Scholar
  13. 10.
    J.M. Kosterlitz and K.J. Thouless, J. Phys. C 6, 1181 (1973).CrossRefGoogle Scholar
  14. 11.
    G. Gomez-Santos, J.D. Joannopoulos, and J.W. Negele, Phys. Rev. B 39, 4435 (1989).CrossRefGoogle Scholar
  15. 12.
    M.A. Subramanian et al, Science 240, 495 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Robledo
    • 1
  • C. Varea
    • 2
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.Mexico
  2. 2.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.Mexico

Personalised recommendations