EGF Triggers a Similar Signalling Cascade in Different Cell Types Overexpressing the EGF Receptor

  • Marco Ruggiero
  • Timothy P. Fleming
  • Toshimitsu Matsui
  • Eddi di Marco
  • Christopher Molloy
  • Pier Paolo di Fiore
  • Jacalyn H. Pierce
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The mechanism by which growth factors stimulate mitogenesis upon binding to their receptors involves several biochemical events and the generation of intracellular second messengers. EGF1 is regarded as a classical example of a growth factor which acts on a receptor harboring tyrosine kinase activity (Berridge, 1987 a,b; Carpenter, 1987). Recently, several reports have indicated that in certain cell types, EGF stimulates inositol lipid turnover with the formation of Ca2+- mobilizing inositol polyphosphates and 1,2-diacylglycerol activating protein kinase C (Hepler et al, 1987; Pandiella et al., 1987; Johnson and Garrison, 1987; Earp et al., 1988; Takasu et al., 1988; Moscat et al., 1988). However, other studies demonstrated that EGF was unable to trigger phosphoinositide metabolism in 3T3 fibroblasts and in a clone of A431 carcinoma cells (Besterman et al, 1986; Macara, 1986; Wakelam et al., 1986; Pandiella et al, 1987). Therefore, EGFinduced inositol lipid turnover might be considered lineagespecific, or at least cell type-specific (Earp et al., 1988), and the role of phosphoinositide metabolism in EGF-induced mitogenesis remains to be established.

Keywords

Serotonin Vanadate Sarcoma Angiotensin Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M. J. (1987) Inositol lipids and cell proliferation. Biochim. Biophys. Acta, 907:33.PubMedGoogle Scholar
  2. Berridge, M. J. (1987) Inositol lipids and DNA replication. Phil. Trans. R. Soc. Lond., 317:525.CrossRefGoogle Scholar
  3. Besterman, J. M., Watson, S. P., and Cuatrecasas, P. (1986) Lack of association of epidermal growth factor-, insulin-, and serum-induced mitogenesis with stimulation of phosphoinositide degradation in BALB/c 3T3 fibroblasts. J. Biol. Chem., 261:723.PubMedGoogle Scholar
  4. Blackshear, P. J., Witters, L. A., Girard, P. R., Kuo, J. F., and Quamo, S. N. (1985) Growth factor-stimulated protein phosphorylation in 3T3 cells: evidence for protein kinase C-dependent and -independent pathways. J. Biol. Chem., 260:13304.PubMedGoogle Scholar
  5. Carpenter, G. (1987) Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem., 56:881.PubMedCrossRefGoogle Scholar
  6. Casey, M. L., and Mitchell, M. D. (1987) Epidermal growth factor-stimulated prostaglandin E2 production in human amnionic cells:specificity and nonesterified arachidonic acid dependency. Mol. Cell Endocrinol., 53:169.PubMedCrossRefGoogle Scholar
  7. Chiarugi, V., Porciatti, F., Pasquali, F., Magnelli, L., Giannelli, S., and Ruggiero, M. (1987) Polyphosphoinositide metabolism is rapidly stimulated by activation of a temperature-sensitive mutant of Rous sarcoma virus in rat fibroblasts. Oncogene, 2:37.PubMedGoogle Scholar
  8. Di Fiore, P. P., Pierce, J. H., Fleming, T. P., Hazan, R., Ullrich, A., King, C. R., Schlessinger, J., and Aaronson, S. A. (1987) Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH/3T3 cells. Cell, 51:1063.PubMedCrossRefGoogle Scholar
  9. Earp, H. S., Hepler, J.R., Petch, L. A., Miller, A., Berry, A., Harris, J., Raymond, V.W., McCune, B.K., Lee, L. W., Grisham, J.W., and Harden, T. K. (1988) Epidermal growth factor (EGF) and hormone stimulate phosphoinositide hydrolysis and increase EGF receptor protein synthesis and mRNA levels in rat liver epithelial cells. J. Biol. Chem., 263:13868.PubMedGoogle Scholar
  10. Finzi, E., Fleming, T. P., Segatto, O., Pennington, C. Y. Bringman, T. S., Derynck, R., and Aaronson, S. A. (1987) The human transforming growth factor type alpha coding sequence is not a direct-acting oncogene when overexpressed in NIH/3T3 cells. Proc. Natl. Acad. Sci. USA, 84:3733.PubMedCrossRefGoogle Scholar
  11. Greenberger, J. S., Sakakeeny, M. A., Humphries, R. K., Eaves, C. J., and Eckner, R. J. (1983) Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc. Natl. Acad. Sci. USA, 80:2931.PubMedCrossRefGoogle Scholar
  12. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260:3440.PubMedGoogle Scholar
  13. Hawkins, P. T., Stephens, L., and Downes, C. P. (1986) Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. Biochem. J., 238, 507.PubMedGoogle Scholar
  14. Hepler, J. R., Nakahata, N., Lovenberg, T. W., DiGuiseppi, J., Herman, B., Earp, H. S., and Harden T. K. (1987) Epidermal growth factor stimulates the rapid accumulation of inositol (1,4,5)-trisphosphate and a rise in cytosolic calcium mobilized from intracellular stores in A431 cells. J. Biol. Chem., 262:2951.PubMedGoogle Scholar
  15. Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P. (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem. J., 229:505.PubMedGoogle Scholar
  16. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J. (1986) The inositol tris/tetrakisphosphate pathway-demonstration of Ins (1,4,5)P3-kinase activity in animal tissues. Nature, 320:631.PubMedCrossRefGoogle Scholar
  17. Jainchill, J. L., Aaronson, S. A., and Todaro, G. J. (1969) Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J. Virol., 4:549.PubMedGoogle Scholar
  18. Johnson, R. M. and Garrison, J. C. (1987) Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5- and inositol 1,3,4-trisphosphate in hepatocytes. J. Biol. Chem., 262:17285.PubMedGoogle Scholar
  19. Lacal, J. C., Moscat, J., and Aaronson, S. A. (1987) Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature, 330:269.PubMedCrossRefGoogle Scholar
  20. Lapetina, E.G.: Inositide-dependent and independent mechanisms in platelet activation. In “Phosphoinositides and Receptor Mechanisms” pp. 271–286, 1986, Alan R. Liss Inc. (New York, NY USA).Google Scholar
  21. Lapetina, E. G., Silio, J., and Ruggiero, M. (1985) Thrombin induces serotonin secretion and aggregation independently of inositol phospholipids hydrolysis and protein phosphorylation in human platelets permeabilized with saponin. J. Biol. Chem., 260:7078.PubMedGoogle Scholar
  22. Macara I. (1986) Activation of 45Ca2+ influx and 22Na+/H+ exchange by epidermal growth factor and vanadate in A431 cells is independent of phosphatidylinositol turnover and is inhibited by phorbol esters and diacylglycerol. J. Biol. Chem., 261:9321.PubMedGoogle Scholar
  23. Majerus, P. W., Neufeld, E. J., and Wilson, D. B. (1984) Production of phosphoinositide-derived messengers. Cell, 37:701.PubMedCrossRefGoogle Scholar
  24. Malgaroli, A., Milani, D., Meldolesi, J., and Pozzan, T. (1987) Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J. Cell Biol., 105:2145.PubMedCrossRefGoogle Scholar
  25. Moscat, J., Molloy, C. J., Fleming, T. P., and Aaronson, S. A. (1988) Epidermal growth factor activates phosphoinositide turnover and protein kinase C in BALB/MK keratinocytes. Molec. Endocrinol., 2:799.CrossRefGoogle Scholar
  26. Nishizuka, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature, 308:693.PubMedCrossRefGoogle Scholar
  27. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334:661.PubMedCrossRefGoogle Scholar
  28. Palmer, S., Hawkins, P. T., Michell, R. H., and Kirk, C. J. (1986) The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem. J., 238:491.PubMedGoogle Scholar
  29. Pandiella, A., Malgaroli, A., Meldolesi, J., and Vicentini, L.M. (1987) EGF raises cytosolic Ca2+ in A431 and Swiss 3T3 cells by a dual mechanism. Exp. Cell Res., 170:175.PubMedCrossRefGoogle Scholar
  30. Pierce, J. H., Ruggiero, M., Fleming, T. P., Di Fiore, P. P., Greenberger, J. S., Varticovski, L., Schlessinger, J., Rovera, G., and Aaronson, S. A. (1988) Signal transduction through the EGF receptor transfected in IL3-deρendent hematopoietic cells. Science, 239:628.PubMedCrossRefGoogle Scholar
  31. Pruss, R. M., and Herschman, H. R. (1977) Variants of 3T3 cells lacking mitogenic response to epidermal growth factor. Proc. Natl. Acad. Sci. USA, 74:3918.PubMedCrossRefGoogle Scholar
  32. Rodriguez-Pena, A., and Rozengurt E. (1986) Phosphorylation of an acidic mol. wt. 80000 cellular protein in a cell-free system and intact Swiss 3T3 cells: a specific marker of protein kinase C activity. EMBO J., 5:77.PubMedGoogle Scholar
  33. Ruggiero, M., Zimmermann, T. P., and Lapetina, E. G. (1985) Saponin suppression of protein phosphorylation in human platelets is related to ATP depletion. Biochem. Biophys. Res. Comm., 131:620.PubMedCrossRefGoogle Scholar
  34. Takasu, N., Takasu, M., Yamada, T. and Shimizu, T. (1988) Epidermal growth factor (EGF) produces inositol phosphates and increases cytoplasmic free calcium in cultured porcine thyroid cells. Biochem. Biophys. Res. Comm., 151:530.PubMedCrossRefGoogle Scholar
  35. Wakelam, M. J. O., Davies, S. A., Houslay, M. D., McKay, I., Marshall, C. J., and Hall, A. (1986) Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature, 323:173.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marco Ruggiero
    • 1
  • Timothy P. Fleming
    • 1
  • Toshimitsu Matsui
    • 1
  • Eddi di Marco
    • 1
  • Christopher Molloy
    • 1
  • Pier Paolo di Fiore
    • 1
  • Jacalyn H. Pierce
    • 1
  1. 1.LCMB, National Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations