Skip to main content

Immunocytochemical Localization of Protein Kinase C

  • Chapter
  • 45 Accesses

Abstract

Protein kinase C (PKC) is a key enzyme involved in regulation of growth and differentiated function (Nishizuka, 1986). In vitro, the enzymatic activity requires both calcium and phospholipids. The neutral lipid, diacylglycerol, also interacts with PKC and decreases the Kact for calcium to concentrations compatible with those found in the cytoplasm. DAG is considered to be the key regulator of PKC activation state in vivo. This is due to the fact that cellular levels of DAG are tightly coupled to hormonal activation of phospholipase C. Tumor promoting phorbol esters mimic diacylglycerol with respect to binding to and activating PKC. Infact, PKC is the major cellular receptor for phorbol esters (Castagna, et al., 1982; Niedel, et al., 1983). It is for this reason that phorbol esters are so often used as specific tools for exploring the role of PKC in biological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M.J., 1986, Intracellular signalling through inositol trisphosphate and diacylglycerol, Biol. Chem. Hoppe-Seyler. 367: 447.

    Article  PubMed  CAS  Google Scholar 

  2. Burridge, K., Molony, L., and Kelly, T., 1987, Adhesion plaques: sites of transmembrane interaction between the extracellular matrix and the actin cytoskeleton, J. Cell. Sci. Suppl. 8: 211.

    PubMed  CAS  Google Scholar 

  3. Cabot, M., Welsh, C.J., Zhang, Z., Cao, H.-t., Chabbott, H., and Lebowitz, H., 1988, Vasopressin, phorbol diesters and serum elicit choline glycerophospholipid hydrolysis and diacylglycerol formation in nontransformed cells: transformed derivatives do not respond, Biochem. Biophys. Acta. 959: 46–57.

    PubMed  CAS  Google Scholar 

  4. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. and Nishizuka, Y., 1982, Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257: 7847.

    PubMed  CAS  Google Scholar 

  5. Coussens, L., Parker, P.J., Rhee, L., Yang-Feng, T.L., Chen, E., Waterfield, M.D., U. Francke, U. and Ullrich, A., 1986, Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways, Science. 233: 859.

    Article  PubMed  CAS  Google Scholar 

  6. Geiger, B., Volk, T., Volberg, T., and Bendori, R., 1987, Molecular interactions in adherens - type contacts, J. Cell. Sci. Suppl. 8: 251.

    PubMed  CAS  Google Scholar 

  7. Gershengorn, M., 1986, Mechanism of thyrotropin releasing hormone stimulation of pituitary hormone secretion, Ann. Rev. Physio1. 48: 515.

    Article  CAS  Google Scholar 

  8. Halsey, D.L., Girard, P.R., Kuo, J.F., and Blackshear, P.J., 1987, Protein kinase C in fibroblasts, J. Biol. Chem. 262: 2234.

    PubMed  CAS  Google Scholar 

  9. Housey, G.M., O’Brian, C.A., Johnson, M.D., Kirschmeier, P., and Weinstein, I.B., 1987, Isolation of cDNA clones encoding protein kinase C: Evidence for a protein kinase C-related gene family, Proc. Natl. Acad. Sci. USA. 84: 1065.

    Article  PubMed  CAS  Google Scholar 

  10. Housey, G.M., Johnson, M.D., Hsiao, W.L.W., O’Brien, C.A., Murphy, J.P., Kirschmeier, P., and Weinstein, I.B., 1988, Overproduction of protein kinase C causes disordered growth control in rat fibroblasts, Cell. 52: 343.

    Article  PubMed  CAS  Google Scholar 

  11. Huang, K.-P., Nakabayashi, II., and Huang, F.L., 1986, Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase, Proc. Natl. Acad. Sci. USA. 83: 8535.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, K.P., Huang, F.L., Nakabayashi, H., and Yoshida, Y., 1988, Biochemical characterization of rat brain protein kinase C isozymes, J. Biol. Chem. 263: 14839.

    PubMed  CAS  Google Scholar 

  13. Ido, M., Sekiguchi, K., Kikkawa, U., and Nishizuka, Y., 1987, Phosphorylation of the EGF receptor from A431 epidermoid carcinoma cells by three distinct types of protein kinase C, FEBS Lett. 219: 215–218.

    Article  PubMed  CAS  Google Scholar 

  14. Jaken, S., and Kiley, S.C., 1987, Purification and characterization of three types of protein kinase C from rabbit brain cytosol, Proc. Natl. Acad. Sci. 84: 4418.

    Article  PubMed  CAS  Google Scholar 

  15. Knopf, J.L., Lee, M.-H., Sultzman, L.A., Kriz, R.W., Loomis, C.R., Hewick, R.M. and Bell, R.M., 1986, Cloning and expression of multiple protein kinase C cDNAs, Cell. 46: 491.

    Article  PubMed  CAS  Google Scholar 

  16. Kraft, A., and Anderson, W.B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with the plasma membrane, Nature. 301: 621.

    Article  PubMed  CAS  Google Scholar 

  17. Leach, K.L., Powers, E.A., McGuire, J.C., Dong, L., Kiley, S.C., and Jaken, S., 1988, Monoclonal antibodies specific for Type 3 protein kinase C recognize distinct domains of protein kinase C and inhibit in vitro functional activity, J. Biol. Chem. 263: 6927.

    Google Scholar 

  18. Niedel, J.E., Kuhn, L.J. and Vandenbark, G.R., 1983, Phorbol diester-receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA. 80: 36.

    Article  PubMed  CAS  Google Scholar 

  19. Nishizuka, Y., 1986, Studies and perspectives on protein kinase C, Science. 233: 305.

    Article  PubMed  CAS  Google Scholar 

  20. Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature. 334: 661.

    Article  PubMed  CAS  Google Scholar 

  21. Ohno, S., Kawasaki, H., Imajoh, S., Suzuki, K., Inagaki, M., Yokokura, H., Sakoh, T., and Hidaka, H., 1987, Tissue-specific expression of three distinct types of rabbit protein kinase C, Nature. 325: 161.

    Article  PubMed  CAS  Google Scholar 

  22. Ohno, S., Akita, Y., Konno, Y., Imajoh, S., and Suziki, K., 1988, A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family, Cell. 53: 731.

    Article  PubMed  CAS  Google Scholar 

  23. Ono, Y., Fujiik, T., Ogita, K., Kikkawa, U., Igarashi, K., and Nishizuka, Y., 1988, The structure, expression, and properties of additional members of the protein kinase C family, J. Biol. Chem. 263: 6927.

    PubMed  CAS  Google Scholar 

  24. Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, H.D. and Ullrich, A., 1986, The complete primary structure of protein kinase C-the major phorbol ester receptor, Science. 233: 853.

    Article  PubMed  CAS  Google Scholar 

  25. Persons, D.A., Wilkison, w.O., Bell, R.M., and Finn, O.J., 1988, Altered growth regulation and enhanced tumorigenicity of NIH 3T3 fibroblasts transfected with protein kinase C-1cDNA, Cell. 52: 447–458.

    Article  PubMed  CAS  Google Scholar 

  26. Preiss, J., Loomis, C.R., Bishop, W.R., Stein, R., Niedel, J.E., and Bell, R.M., 1986, Quantitative Measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis- transformed normal rat kidney cells, J. Biol. Chem. 261: 8596–8600.

    Google Scholar 

  27. Sekiguchi, K., Tsukuda, M., Ase, K., Kikkawa, U., and Nishizuka, Y., 1988, Mode of activation and kinetic properties of three distinct forms of protein kinase C from rat brain, J. Biochem. (Tokyo) 103: 759–765 (1988).

    CAS  Google Scholar 

  28. Weinstein, I.B., Lee, L., Fisher, P.B., Mufson, A., and Yamasaki, H., 1988, Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes, J. of Supramol. Structure 12: 195–208.

    Article  Google Scholar 

  29. Welsh, C.J., Cao, H.-t., Chabbott, H., and Cabot, M.C., 1988, Vasopressin is the only component of serum-free medium that stimulates phosphatidylcholine hydrolysis and accumulation of diacylglycerol in cultured REF52 cells, Biochem. Biophys. Res. Commun. 152: 565–572.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Jaken, S., Kiley, S.C., Klauck, T., Dong, L., Hyatt, S. (1990). Immunocytochemical Localization of Protein Kinase C. In: Vanderhoek, J.Y. (eds) Biology of Cellular Transducing Signals. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0559-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0559-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7866-5

  • Online ISBN: 978-1-4613-0559-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics