Skip to main content

Resonance Raman Spectroscopic Characterization of the Oxidation of the Horseradish Peroxidase Active Site

  • Chapter
Charge and Field Effects in Biosystems—2

Abstract

Enzymes containing heme prosthetic groups (heme enzymes) are an extensive class of biological catalysts. These enzymes possess differing reactivities and specificities, even though they contain a very similar active site heme group, which is in many cases an unmodified iron-bound protoporphyrin IX. Some heme enzymes of current interest include cytochrome P-450, cytochrome oxidase, tryptophan pyrollase, prostaglandin synthase, secondary amine mono-oxygenase, ligninase and the various peroxidases and catalases [1–3]. The ability of the heme enzymes to mediate reactions involving oxygen is of importance to industrial applications and health related areas [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.B. Dunford (1982) Adv. Inorg. Biochem. 4, 41–68

    CAS  Google Scholar 

  2. J.T. Groves (1979) Adv. Inorg. Biochem. 1, 119–145

    CAS  Google Scholar 

  3. J.H. Dawson (1988) Science 240, 433–439

    Article  CAS  Google Scholar 

  4. T.J. McMurry and J.T. Groves (1986) in Ortiz de Montellano, P.R. (ed.) “Cytochrome P–450, Structure Mechanism and Biochemistry” pp. 1–28

    Google Scholar 

  5. T.G. Spiro (1974) Accts. Chem. Res 7, 339–345

    Article  CAS  Google Scholar 

  6. J. Terner and M.A. El–Sayed (1985) Accts. Chem. Res. 18, 331–338

    Article  CAS  Google Scholar 

  7. F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer, M.D Brice, J.R. Rodgers, D. Kennard, T. Shimanouchi, and M. Tasumi (1977) J. Mol. Biol. 112, 535–542

    Article  CAS  Google Scholar 

  8. L.A. Fishel, J.E. Villefranca, J.M. Mauro, J. and Kraut (1987) Biochemistry 26, 351–360

    Article  CAS  Google Scholar 

  9. D.B Goodin, A.G. Mauk, and M. Smith, (1987) J. Biol. Chem. 262, 7719–7724

    CAS  Google Scholar 

  10. J.M. Mauro, L.A. Fishel, J.T. Hazzard, T.E. Meyer, G. Tollin, M.A. Cusanovich, and J. Kraut (1988) Biochemistry 27, 6243–6256

    Article  CAS  Google Scholar 

  11. W.D. Hewson and L.P. Hager, (1979) in “The Porphyrins” D. Dolphin (ed.), Vol. VII, Academic Press, NY, pp. 295–332

    Google Scholar 

  12. B. Chance, L. Powers, Y. Ching, T. Poulos, I. Yamazaki and K.G. Paul (1984) Arch. Biochem. Biophys. 235, 596–611

    Article  CAS  Google Scholar 

  13. D. Dolphin and R.H Felton (1974) Acc. Chem. Res. 7, 26–32

    Article  CAS  Google Scholar 

  14. Y. Hayashi and I. Yamazaki (1979) J. Biol. Chem. 254, 9101–9106

    CAS  Google Scholar 

  15. Y. Hayashi and I. Yamazaki (1979) in “Biochemical and Clinical Aspects of Oxygen”, Caughey, W.S. ed., Academic Press, N.Y. pp. 157–165

    Google Scholar 

  16. I. Yamazaki, M. Tamura and R. Nakajima (1981) Mol. Cell. Biochem. 40, 143–153

    Article  CAS  Google Scholar 

  17. P. George (1953) Science 117, 220–221

    Article  CAS  Google Scholar 

  18. A.J. Sitter, J.R. Shifflett and J. Terner (1988) J. Biol. Chem. 263, 13032–13038

    CAS  Google Scholar 

  19. W.A. Oertling and G.T. Babcock (1988) Biochemistry 27, 3331–3338

    Article  CAS  Google Scholar 

  20. C.A. Reed (1982) in “Biological Chemistry of Iron” H.B. Dunford etal. (eds.), D. Reidel Publishing Co. pp. 25–42

    Google Scholar 

  21. J. Peisach, W.E. Blumberg, B.A. Wittenberg and J. Wittenberg (1968) J. Biol. Chem. 243, 1871–1880

    CAS  Google Scholar 

  22. J. Terner, A.J. Sitter, and C.M. Reczek (1985) Biochim. Biophys. Acta 828, 73–80

    Article  CAS  Google Scholar 

  23. A.J. Sitter, C.M. Reczek, and J. Terner (1985) Biochim. Biophys. Acta 828, 229–235

    Article  CAS  Google Scholar 

  24. S. Hashimoto, Y. Tatsuno, and T. Kitagawa (1984) Proc. Jap. Acad. 60B, 345–348

    Article  CAS  Google Scholar 

  25. R. Makino, T. Uno, Y. Nishimura, T. Iizuka, M. Tsuboi, and Y. Ishimura, (1986) J. Biol. Chem. 261, 8376–8382

    CAS  Google Scholar 

  26. G. Simonneaux, W.F. Scholz, C.A. Reed and G. Lang, (1982) Biochim. Biophys. Acta 716, 1–7

    CAS  Google Scholar 

  27. S.A. Asher and T.M. Schuster (1979) Biochemistry 18, 5377–5387

    Article  CAS  Google Scholar 

  28. H. Brunner (1974) Naturwiss. 61, 129–131

    Article  CAS  Google Scholar 

  29. J.B.R. Dunn, D.F. Shriver and I.M. Klotz (1973) Proc. Natl. Acad. Sci. USA, 70, 2582–2584 (1973).

    Google Scholar 

  30. J.S. Loehr, T.B. Freedman, and T.M. Loehr (1974) Biochem. Biophys Res. Commun. 56, 510–515

    Google Scholar 

  31. A.J. Sitter, C.M. Reczek and J. Terner (1986) J. Biol. Chem. 261, 8638–8642

    Google Scholar 

  32. I. Yamazaki, T. Araiso, Y. Hayashi, H. Yamada, and R. Makino (1978) Adv. Biophys. 11, 249–281

    CAS  Google Scholar 

  33. P. Nicholls and G.R. Schonbaum in “The Enzymes” P. Boyer etal. (ed.), 8 p. 147 Academic NY (1963)

    Google Scholar 

  34. G. Rakshit and T.G. Spiro, (1974) Biochemistry 13, 5317–5323

    Article  CAS  Google Scholar 

  35. G. Rakhit, T.G. Spiro, and M. Uyeda (1976) Biochem. Biophys. Res. Commun. 71, 803–808

    Article  CAS  Google Scholar 

  36. J. Teroaka and T. Kitagawa (1981) J. Biol. Chem. 256, 3969–3977

    Google Scholar 

  37. R.H. Felton, A.Y. Romans, N.–T. Yu, and G.R. Schonbaum, (1976) Biochim. Biophys. Acta 434, 82–89

    CAS  Google Scholar 

  38. R.D. Remba, P.M. Champion, D.B. Fitchen, R. Chiang, and L.P. Hager (1979) Biochemistry 18, 2280–2290

    Article  CAS  Google Scholar 

  39. J. Teroaka, T. Ogura, and T. Kitagawa (1982) J. Amer. Chem. Soc. 104, 7354–7356

    Article  Google Scholar 

  40. T. Kitagawa, S. Hashimoto, J. Teroaka, S. Nakamura, H. Yajima, and T. Hosoya (1983) Biochemistry 22, 2788–2792

    Article  CAS  Google Scholar 

  41. A. Desbois, G. Mazza, F. Stetzkowski, and M. Lutz (1984) Biochim.Biophys. Acta 785, 161–176

    Article  CAS  Google Scholar 

  42. J. Terner and D.E. Reed (1984) Biochim. Biophys. Acta 789, 80–86

    Article  CAS  Google Scholar 

  43. A.J. Sitter, C.M. Reczek, and J. Terner (1985) J. Biol. Chem. 260, 7515–7522

    CAS  Google Scholar 

  44. J.E. Critchlow and H.B. Dunford (1972) J. Biol. Chem. 247, 3703–3713

    CAS  Google Scholar 

  45. H.B. Dunford and M.L. Cotton (1975) J. Biol. Chem. 250, 2920–2932

    CAS  Google Scholar 

  46. B.B. Hasinoff and H.B. Dunford (1970) Biochemistry 9, 4930–4939

    Article  CAS  Google Scholar 

  47. Y. Hayashi and I. Yamazaki (1978) Arch. Biochem. Biophys. 190, 446–453

    Article  CAS  Google Scholar 

  48. J.D. Otvos and D.T. Browne (1980) Biochemistry 19, 4011–4021

    Article  CAS  Google Scholar 

  49. O. Jardetsky and G.K.C. Roberts (1981) “NMR in Molecular Biology” Academic Press, NY

    Google Scholar 

  50. B. Chance (1952) Arch. Biochem. Biophys. 41 425–431

    Article  CAS  Google Scholar 

  51. P. George (1953) J. Biol. Chem. 201, 413–426

    CAS  Google Scholar 

  52. S. Shahangian and L.P. Hager (1982) J. Biol. Chem. 257, 11529–11533

    CAS  Google Scholar 

  53. L.P. Hager, P.F. Hollenberg, T. Rand–Meier, R. Chiang, and D. Doubek (1975) Ann. N.Y. Acad. Sci. 244, 80–93

    Article  CAS  Google Scholar 

  54. R. Chiang, T. Rand–Meier, R. Makino, and Hager, L.P. (1976) J. Biol. Chem. 251, 6340–6346

    Google Scholar 

  55. P.F. Hollenberg, T. Rand–Meier and L.P. Hager (1974) J. Biol. Chem. 249, 5816–5825

    CAS  Google Scholar 

  56. H. Yamada, N. Itoh and Y. Izumi (1985) J. Biol. Chem. 260, 11962–11969

    CAS  Google Scholar 

  57. F.S. Brown and L.P. Hager (1967) J. Amer. Chem. Soc. 89, 719–720

    Article  CAS  Google Scholar 

  58. R.D. Libby, J.A. Thomas, L.W. Kaiser and L.P. Hager (1982) J. Biol. Chem. 257, 5030–5037

    CAS  Google Scholar 

  59. W.D. Hewson and L.P. Hager (1979) J. Biol. Chem. 254, 3182–3186

    CAS  Google Scholar 

  60. W.D. Hewson and L.P. Hager (1979) J. Biol. Chem. 254, 3175–3181

    Google Scholar 

  61. D. Keilin and T. Mann (1937) Proc. Roy. Soc. London B122, 119–133

    Article  CAS  Google Scholar 

  62. H. Theorell and Ä. Äkesson (1941) J. Amer. Chem. Soc. 63, 1804–1820

    Article  CAS  Google Scholar 

  63. H.A. Harbury (1957) J. Biol. Chem. 225, 1009–1024

    CAS  Google Scholar 

  64. S. Marklund, P.–I. Ohlsson, A. Opara and K.–G. Paul (1974) Biochim. Biophys. Acta 350, 304–313

    CAS  Google Scholar 

  65. P. George and G.I.H. Hanania (1953) Biochem. J. 55, 236–243

    CAS  Google Scholar 

  66. P. George and G. Hanania (1952) Biochem. J. 52, 517–523

    CAS  Google Scholar 

  67. D. Job, J. Ricard, and H.B. Dunford (1977) Arch. Biochem. Biophys. 179, 95–99

    Article  CAS  Google Scholar 

  68. N. Epstein and A. Schejter (1972) FEBS Letters 25, 46–48

    Article  CAS  Google Scholar 

  69. T. Iizuka, S. Ogawa, T. Inubushi, T. Yonezawa and I. Morishima, I. FEBS Letters 64, 156–158

    Google Scholar 

  70. I. Morishima, S. Ogawa, T. Inubishi, T. Yonezawa and T. Iizuka, T. (1977) Biochemistry 16, 5109–5115

    Article  CAS  Google Scholar 

  71. J.S. de Ropp, G.N. La Mar, K.M. Smith and K.C. Langry (1984) J. Amer. Chem. Soc. 106 4438–4444

    Google Scholar 

  72. J. Teroaka and T. Kitagawa (1981) J. Biol. Chem. 256, 3969–3977

    Google Scholar 

  73. S.A. Asher, L.E. Vickery, T.M. Schuster and K. Sauer (1977) Biochemistry 16, 5849–5856

    Article  CAS  Google Scholar 

  74. A. Desbois, M. Lutz and R. Banerjee (1979) Biochemistry 18, 1510–1518

    Article  CAS  Google Scholar 

  75. T.C. Strekas and T.G. Spiro (1974) Biochim. Biophys. Acta 351, 237–245

    CAS  Google Scholar 

  76. P. George, J. Beetlestone and J.S. Griffith (1964) Rev. Mod. Phys. 36, 441–458

    Article  CAS  Google Scholar 

  77. J. Beetlestone and P. George (1964) Biochemistry 3, 707–714

    Article  CAS  Google Scholar 

  78. W.A. Lee, T.A. Calderwood and T.C. Bruice (1985) Proc. Natl. Acad. Sci. USA 82, 4301–4305

    Article  CAS  Google Scholar 

  79. M.A. Phillippi and H.M. Goff (1982) J. Amer. Chem. Soc. 104, 6026–6034

    Article  CAS  Google Scholar 

  80. G.R. Schonbaum, R.A. Houtchens W.S. and Caughey (1979) in “Biochemical and Clinical Aspects of Oxygen” Caughey, W.S. (ed.) Academic Press, New York, pp. 195–211

    Google Scholar 

  81. T.M. Loehr and R.A. Plane, R.A. (1968) Inorg. Chem. 7, 1708–1714

    Article  CAS  Google Scholar 

  82. B.M. Sjöberg, J. Sanders–Loehr and T.M. Loehr (1987) Biochemistry 26, 4242–4247

    Article  Google Scholar 

  83. T.L. Poulos and B.C. Finzel (1984) Peptide and Protein Reviews 4, 115–172

    CAS  Google Scholar 

  84. T.G. Traylor and R. Popovitz–Biro (1988) J. Amer. Chem. Soc. 110, 239–243

    Article  CAS  Google Scholar 

  85. M.M. Doeff, D.A. Sweigart and P. O’Brien (1983) Inorg. Chem. 22, 851–852

    Article  CAS  Google Scholar 

  86. P. O’Brien and D.A. Sweigart (1985) Inorg. Chem. 24, 1405–1409

    Article  Google Scholar 

  87. R. Quinn, J. Mercer–Smith, J.N. Burstyn and J.S. Valentine (1984) J. Amer. Chem. Soc. 106, 4136–4144

    Article  CAS  Google Scholar 

  88. T.G. Traylor, W.A. Lee, and D.V. Stynes (1984) J. Amer. Chem. Soc. 106, 755–764

    Article  CAS  Google Scholar 

  89. F.A. Walker, M.–W. Lo, and M.T. Ree (1976) J. Amer. Chem. Soc. 98, 5552–5560

    Article  CAS  Google Scholar 

  90. F.A. Walker, M.–W. Lo, and M.T. Ree (1976) J. Amer. Chem. Soc. 98, 5552–5560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Terner, J., Sitter, A.J., Shifflett, J.R. (1989). Resonance Raman Spectroscopic Characterization of the Oxidation of the Horseradish Peroxidase Active Site. In: Allen, M.J., Cleary, S.F., Hawkridge, F.M. (eds) Charge and Field Effects in Biosystems—2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0557-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0557-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7865-8

  • Online ISBN: 978-1-4613-0557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics