Advertisement

Nonlinear Effects of Periodic Electric Fields on Membrane Proteins

  • Baldwin Robertson
  • R. Dean Astumian
  • Tian Yow Tsong

Abstract

The nonlinear response of a two-state chemical reaction to an oscillating electric field is described. An interesting example is a conformational transition of a membrane protein in an applied ac electric field. Even a modest external field leads to a very large local field within the membrane and hence gives rise to nonlinear behavior. The applied ac field causes harmonics in the polarization and can cause a dc shift in the state occupancy, both of which can be observed and used to determine kinetic parameters. Fourier coefficients are given for the enzyme state probability in the ac field, exactly for infinite frequency, and in a series of powers of the field for finite frequency. The results are extended to the spherical symmetry relevant to suspensions of spherical cells or vesicles.

Keywords

Rate Coefficient Transport Reaction Conformational Transition Inverse Relaxation Time Periodic Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Y. Tsong and R. D. Astumian, Prog. Biophys. Mol. Biol. 50, 1 (1987).CrossRefGoogle Scholar
  2. 2.
    R. D. Astumian, P. B. Chock, T. Y. Tsong, and H. V. Westerhoff, Phys. Rev. A 39, (June, 1989 ).Google Scholar
  3. 3.
    H. V. Westerhoff, R. D. Astumian, and D. B. Kell, Ferroelectrics, 86, 79 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Eigen and L. DeMayer, Techqs. Chem. 6, 219 (1973).Google Scholar
  5. 5.
    R. D. Astumian and B. Robertson, submitted to J. Chem. Phys.Google Scholar
  6. 6.
    T. Y. Tsong and R. D. Astumian, Bioelectrochem. Bioenerg. 15, 457 (1986).CrossRefGoogle Scholar
  7. 7.
    H. V. Westerhoff, T. Y. Tsong, P. B. Chock, Y.-D. Chen, and R. D. Astumian, Proc. Natl. Acad. Sci. U.S.A. 83, 4734 (1986).CrossRefGoogle Scholar
  8. 8.
    R. D. Astumian, P. B. Chock, T. Y. Tsong, Y.-D. Chen, and H. V. Westerhoff, Proc. Natl. Acad. Sci. U.S.A. 84, 434 (1987).CrossRefGoogle Scholar
  9. 9.
    T. Y. Tsong and R.D. Astumian, Ann. Rev. Physiol. 50, 273 (1988).CrossRefGoogle Scholar
  10. 10.
    P. Lauger and P. Jauch, J. Memb. Biol. 91, 275 (1986).CrossRefGoogle Scholar
  11. 11.
    E. H. Serpersu and T. Y. Tsong, J. Biol. Chem. 259, 7155 (1984).Google Scholar
  12. 12.
    D. S. Liu, R. D. Astumian, and T. Y. Tsong, J. Biol. Chem., submitted (1989).Google Scholar
  13. 13.
    T. Y. Tsong, D. S. Liu, F. Chauvin, and R. D. Astumian, Biosci. Rep., 9, 13 (1988).CrossRefGoogle Scholar
  14. 14.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series 55 (1964), Eqs. 9.6.34, 9.6.10, and 9. 6. 6.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Baldwin Robertson
    • 1
  • R. Dean Astumian
    • 1
  • Tian Yow Tsong
    • 2
  1. 1.Chemical Process Metrology DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of BiochemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations