Advertisement

Multicriticality in Hexatic Liquid Crystals

  • Amnon Aharony
Part of the NATO ASI Series book series (NSSB, volume 211)

Abstract

The elegant theories of defect mediated transitions1 provide an interesting scenario for melting of two dimensional crystals. In particular they predict an intermediate phase with quasi-long-range orientational order: the hexatic 2. However, observation of the crystal-hexatic-liquid sequence in either experiments or simulations has proved controversial1 - the hexatic phase can be pre-empted by a direct discontinuous melting transition. Birgeneau and Litster3 observed that certain liquid crystal phases can be regarded as three dimensional stacked hexatic layers. The coupling of layers in the third dimension, endows them with true long-range orientational order, and changes the nature of the corresponding transitions4. However, by looking at successively thinner films of such liquid crystals one may hope to approach the two dimensional limit, and indeed recently several groups have been engaged in such a pursuit, using diffraction studies of freely suspended liquid crystal films5–7. These studies may provide the most accurate and cleanest probe1 of the two dimensional melting sequence.

Keywords

Liquid Crystal Orientational Order Mean Field Theory Liquid Crystal Phasis Hexatic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent review, see K. J. Stranburg, Rev. Mod. Phys. 60:161 (1988).Google Scholar
  2. 2.
    D. R. Nelson and B. I. Halperin, Phys. Rev. B 19:2457 (1979); A. P. Young, Phys. Rev. B19:1855 (1979). For a review see D. R. Nelson in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, NY, 1983), p.l.Google Scholar
  3. 3.
    R. J. Birgeneau and J. D. Litster, J. Phys. (Paris), Lett. 39:399 (1978).Google Scholar
  4. 4.
    R. Bruinsma and D. R. Nelson, Phys. Rev. B23:402 (1981).Google Scholar
  5. 5.
    E. B. Sirota, P. S. Pershan, L. B. Sorenson, and J. Collett, Phys. Rev. Lett. 55:2039 (1985); and references therein.Google Scholar
  6. 6.
    M. Cheng, J. T. Ho, S. W. Hui, and R. Pindak, Phys. Rev. Lett. 59:1112 (1987); and references therein.Google Scholar
  7. 7.
    J. D. Brock, D. Y. Noh, B. R. McClain, J. D. Litster, R. J. Birgeneau, A. Aharony, P. M. Horn, and J. C. Liang, Z. Phys. (submitted); and references therein.Google Scholar
  8. 8.
    J. D. Brock, R. J. Birgeneau, J. D. Litster and A. Aharony, Physics Today (in press).Google Scholar
  9. 9.
    G. W. Gray and J. W. Goodby, Smectic Liquid Crystals: Textures and Structures (Leonard Hill, Glasgow and London, UK, 1984).Google Scholar
  10. 10.
    A. Aharony, R. J. Birgeneau, J. D. Brock, and J. D. Litster, Phys. Rev. Lett. 57:1012 (1986).CrossRefGoogle Scholar
  11. 11.
    J. D. Brock, A. Aharony, R. J. Birgeneau, K. W. Evans-Lutterodt, J. D. Litster, P. M. Horn, G. B. Stephenson, and A. R. Tajbakhsh, Phys. Rev. Lett. 57:98 (1986).CrossRefGoogle Scholar
  12. 12.
    A. Aharony and M. Kardar, Phys. Rev. Lett. 61:2855 (1988).CrossRefGoogle Scholar
  13. 13.
    D. R. Nelson and B. I. Halperin, Phys. Rev. B21:5312 (1980).Google Scholar
  14. 14.
    e.g., A. Aharony, in Phase Transitions and Critical Phenomena, edited by C. Domb and M.S. Green (Academic, New York, 1976), 6:357.Google Scholar
  15. 15.
    H. Rohrer and Ch. Gerber, Phys. Rev. Lett. 38:909 (1977).CrossRefGoogle Scholar
  16. 16.
    A. Aharony, K. A. Müller and W. Berlinger, Phys. Rev. Lett. 38:33 (1977).CrossRefGoogle Scholar
  17. 17.
    A. D. Bruce and A. Aharony, Phys. Rev. Bl 1:478 (1975).CrossRefGoogle Scholar
  18. 18.
    >C.Y. Young, et al., Phys. Rev. Lett. 45:1193 (1980); R. Pindak et al., Phys. Rev. Lett. 45:1193 (1980); C. Rosenblatt et al., Phys. Rev. Lett. 46:140 (1980).Google Scholar
  19. 19.
    D. E. Moncton and R. Pindak, Phys. Rev. Lett. 43:701 (1979); D. E. Moncton et al., Phys. Rev. Lett. 49:1865 (1982).Google Scholar
  20. 20.
    R. Pindak et al., Phys. Rev. Lett. 46:1135 (1981).CrossRefGoogle Scholar
  21. 21.
    M. Cheng et al., Phys. Rev. Lett. 61:550 (1988).CrossRefGoogle Scholar
  22. 22.
    C. W. Garland, J. D. Litster and K. J. Stine (unpublished).Google Scholar
  23. 23.
    D. J. Scalapino, Y. Imry and P. Pincus, Phys. Rev. Bl 1:2042 (1975). See also J. D. Axe, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Riste (Plenum Press, New York, 1980), p. 399.Google Scholar
  24. 24.
    T. Thio et al., Phys. Rev. B38:905 (1988).Google Scholar
  25. 25.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C6:1181 (1973); T, M, Kosterlitz, J. Phys. C7:1046 (1974).Google Scholar
  26. 26.
    M. Paczuski and M. Kardar, Phys. Rev. Lett. 60:861 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Amnon Aharony
    • 1
    • 2
  1. 1.School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations