Random Surfactant Assemblies and Microemulsions

  • M. E. Cates
Part of the NATO ASI Series book series (NSSB, volume 211)


Surfactant molecules in dilute solution have a strong tendency to aggregate reversibly into larger structures1. While this often involves the formation of simple, roughly spherical micelles, there is now strong experimental and industrial interest in materials whose behaviour is more complicated. The resulting assemblies are often sufficiently large and/or flexible that their spatial configurations are highly entropic. In the one-dimensional case, there is a close analogy with polymers2. In what follows, we consider sheet-like bilayer assemblies, for which the corresponding analogy is with the theory of random surfaces, an area in which many fundamental problems remain to be solved. The theory of microemulsions (oil/water surfactant mixtures in which regions of each solvent are separated from one another by a surfactant monolayer) can also be described as a random surface problem, at least in the “balanced” case of oil/water symmetry.


Fluid Film Symmetric Pair Random Surface String Field Theory Break Symmetry Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London (1985).Google Scholar
  2. 2.
    See, e.g., M. E. Cates, J. Phys. Paris 49:1593 (1988) and references therein.Google Scholar
  3. 3.
    P. B. Canham, J. Theor. Biol. 26:61 (1970); W. Helfrich, Z. Naturforsch. 28C:693 (1973).Google Scholar
  4. 4.
    See the review by S. Leibler in Statistical Mechanics of Membranes and Surfaces, editors D. R. Nelson, T. Piran and S. Weinberg, World Scientific, Singapore (1989).Google Scholar
  5. 5.
    W. Helfrich, J. Phys. Paris 46:1263 (1985); L. Peliti and S. Leibler, Phys. Rev. Lett. 54:1690 (1985); D. Foerster, Phys. Lett. A114:115 (1986).Google Scholar
  6. 6.
    F. David, in Statistical Mechanics of Membranes and Surfaces, editors D. R. Nelson, T. Piran and S. Weinberg , World Scientific, Singapore (1989).Google Scholar
  7. 7.
    P. G. de Gennes and C. Taupin, J. Phys. Chem. 86:2294 (1982); J. Jouffroy, P. Levinson and P. G. de Gennes, J. Phys. Paris 43:1241 (1982).Google Scholar
  8. 8.
    D. A. Huse and S. Leibler, J. Phys. Paris 49:605 (1988).Google Scholar
  9. 9.
    H. Kleinert, Phys. Lett. 114A:263 (1986); E. Guitter, unpublished.Google Scholar
  10. 10.
    Y. Talmon and S. Prager, J. Chem. Phys. 69:2984 (1978); 76:1535 (1982).Google Scholar
  11. 11.
    B. Widom, J. Chem. Phys. 81:1030 (1984).CrossRefGoogle Scholar
  12. 12.
    S. A. Safran, D. Roux, M. E. Cates and D. Andelman, Phys. Rev. Lett. 57:491 (1986); D. Andelman, M. E. Cates, D. Roux and S. A. Safran, J. Chem. Phys. 87:7229 (1987); M. E. Cates, D. Andelman, S. A. Safran, and D. Roux, Langmuir 4:802 (1988).Google Scholar
  13. 13.
    M. E. Cates, D. Roux, D. Andelman, S. T. Milner and S. A. Safran, Euro–physics Lett. 5:733 (1988), erratum: ibid 7:94; also, unpublished calculations for the case ζ α ≠ 1.Google Scholar
  14. 14.
    L. Golubovic and T. C. Lubensky, preprint (1989).Google Scholar
  15. 15.
    W. Helfrich, Z. Naturforsch. 33A:305 (1978).Google Scholar
  16. 16.
    C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, R Dimon, N. A. Clark and A. M. Bellocq, Phys. Rev. Lett. 57:2718 (1986).Google Scholar
  17. 17.
    D. Roux and C. M. Knobler, Phys. Rev. Lett. 60:373 (1988).CrossRefGoogle Scholar
  18. 18.
    D. Roux, private communication.Google Scholar
  19. 19.
    N. A. Mazer, G. B. Benedek and M. C. Carey, Biochemistry, 19:601 (1980); P. Schurtenberger, N. A. Mazer and W. Kaenzig, J. Phys. Chem. 89:1042 (1985).Google Scholar
  20. 20.
    F. Harusawa, S. Nakumara and T. Mitsui, Colloid Polym. Sei. 252:613 (1974); D. J. Mitchell, G. J. Tiddy, L. Waring, T. Bostock and M. P. McDonald, J. Chem. Soc. Faraday Trans. I, 79:1975 (1983); R. G. Laughlin, in Advances in Liquid Crystals, editor G. H. Brown, Academic Press, New York (1978) pp 44 and 91; P. G. Nilsson and B. Lindman, J. Phys. Chem. 88:4764 (1984); W. J. Benton and C. J. Miller, J. Phys. Chem. 87:4981 (1983).Google Scholar
  21. 21.
    J. C. Lang and R. D. Morgan, J. Chem. Phys. 73:5849 (1980).CrossRefGoogle Scholar
  22. 22.
    G. Porte, J. Marignan, P. Bassereau and R. May, J. Phys. Paris 49:511 (1988).Google Scholar
  23. 23.
    A detailed mechanism, that involves strong nonlinear corrections to Eq.l, is suggested by D. Anderson, H. Wennerstrom and U. Olsson, to be published.Google Scholar
  24. 24.
    M. E. Cates and S. T. Milner, Phys. Rev. Lett. 62:1856 (1989).CrossRefGoogle Scholar
  25. 25.
    See, e.g., Surfactants in Solution, editors K. Mittal and B. Lindman, Plenum, New York (1984, 1987).Google Scholar
  26. See, e.g., Surfactants in Solution, editors K. Mittal and B. Lindman, Plenum, New York (1984, 1987).Google Scholar
  27. 26.
    See, e.g., Surfactants, editor T. F. Tadros, Academic Press, London (1984), especially the article on oil recovery by E. Neustadter.Google Scholar
  28. 27.
    S. T. Milner, S. A. Safran, D. Andelman, M. E. Cates and D. Roux, J. Phys. Paris 49:1065 (1988).Google Scholar
  29. 28.
    B. Widom, J. Chem. Phys. 84:6943 (1986); B. Widom, K. A. Dawson and M. D. Lipkin, Physica 140A:26 (1986), M. Schick and W. H. Shih, Phys. Rev. B 34:1797 (1986), K. Chen, C. Ebner, C. Jayaprakash and R. Pandit, J. Phys. C 20:L361 (1987).Google Scholar
  30. 29.
    M. Teubner and R. Strey, J. Chem. Phys. 87:3195 (1987), and references therein.Google Scholar
  31. 30.
    N. F. Berck, Phys. Rev. Lett. 58:2718 (1987); M. Teubner, unpublished.Google Scholar
  32. 31.
    J. W. Calm, J. Chem. Phys. 42:93 (1965).CrossRefGoogle Scholar
  33. 32.
    See J. Froehlich, in Lecture Notes in Physics Vol. 216, Applications of Field Theory to Statistical Mechanics, editor L. Garrido, Springer, Berlin (1985); also A. Krzywicki, J. Ambjorn, V. A. Kazakov and I. K. Rostov, in Field Theory on the Lattice, Nucl. Phys. B (Proc. Suppl.) 4 (1988).Google Scholar
  34. 33.
    A. M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, London (1987).Google Scholar
  35. B. Durhuus, J. Froehlich and T. Jonsson, Nucl. Phys. B240:453 (1984); G. Parisi, Phys. Lett. B 81:357 (1979); J. M. Drouffe, G. Parisi and N. Sourlas, Nucl. Phys. B 161:397 (1980); F. David and E. Guitter, Europhysics Lett. 3:1169 (1987), Nucl. Phys. B 295:332 (1988).Google Scholar
  36. 35.
    M. E. Cates, Phys. Lett. B 161:363 (1985).CrossRefGoogle Scholar
  37. 36.
    T. C. Lubensky and J. Isaacson, Phys. Rev. A 20:2130 (1979).CrossRefGoogle Scholar
  38. 37.
    A. M. Polyakov, Phys. Lett. B 103:207 (1981).CrossRefGoogle Scholar
  39. 38.
    Y. Kantor, M. Kardar and D. R. Nelson, Phys. Rev. Lett. 57:791 (1986).CrossRefGoogle Scholar
  40. 39.
    M. E. Cates, Europhysics Lett. 8:719 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. E. Cates
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations