Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 210))

Abstract

A crystal is said to be twinned when it contains regions whose atomic structures, being uniform in each region, are mutually related by some well defined law and this law is repeatedly observed in many samples of the crystalline species. These requirements distinguish twins from polycrystalline aggregates in which the crystallites are randomly oriented. Since the beginning of crystallography as a science, twinned crystals provided objects interesting to describe. Their investigation was rather academic, with useful aspects in the determination of minerals. New impulses for the investigation of twinning have been connected with practical uses of crystalline materials (metals, quartz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Friedel, Bull. Soc. Franc. Mineralogie, 56:262 (1933).

    CAS  Google Scholar 

  2. R. W. Cahn, Adv. Phys., 3:363 (1954).

    Article  Google Scholar 

  3. B. K. Vainshtein, V. M. Fridkin and V. L. Indenbom, “Modern Crystallography”, vol. II, Springer-Verlag, Berlin (1981).

    Google Scholar 

  4. G. Donnay and J. D. H. Donnay, Canad. Mineral., 12:422 (1974).

    Google Scholar 

  5. P. Ramdohr and H. Strunz, “Klockmanns Lehrbuch der Mineralogie”, Ferdinand Enke Verlag (1967).

    Google Scholar 

  6. M. J. Buerger, in: “Phase Transformations in Solids”

    Google Scholar 

  7. R. Smoluchowski, ed., p. 183, Wiley, New York (1951).

    Google Scholar 

  8. H. Tabata and E. Ishii, J. Crystal Growth, 49:753 (1980).

    Article  CAS  Google Scholar 

  9. R. C. De Vries, J. Am. Ceram. Soc., 42:547 (1959).

    Article  Google Scholar 

  10. J. W. Nielsen, R. C. Linares and S. E. Koonce, J. Am. Ceram. Soc., 45:12 (1962).

    Article  CAS  Google Scholar 

  11. J. W. Christian, “The Theory of Transformations in Metals and Alloys”, Pergamon Press, Oxford (1965).

    Google Scholar 

  12. L. A. Shuvalov, A. A. Urusovskaya et al., “Modern Crystallography”, vol. IV, Springer-Verlag, Berlin (1981).

    Google Scholar 

  13. L. A. Shuvalov, J. Phys. Soc. Japan, 28 Suppl., 38 (1970).

    Google Scholar 

  14. K. Aizu, Phys. Rev., B2:754 (1970).

    Google Scholar 

  15. V. Janovec, V. Dvorak and J. Petzelt, Czech. J. Phys., B25:1362 (1975).

    Article  Google Scholar 

  16. V. Janovec, Czech. J. Phys., B22:974 (1972).

    Article  Google Scholar 

  17. V. Janovec, Ferroelectrics, 12:43 (1976).

    Article  Google Scholar 

  18. R. E. Newnham and L. E. Cross, Mat. Res. Bull., 9:927,1021 (1974).

    Google Scholar 

  19. K. Aizu, J. Phys. Soc. Japan, 34:121 (1973).

    Article  CAS  Google Scholar 

  20. R. E. Newnham, American Mineralogist, 59:906 (1974).

    CAS  Google Scholar 

  21. J. Fousek and V. Janovec, J. Appl. Phys., 40:135 (1969).

    Article  CAS  Google Scholar 

  22. J. Fousek, Czech. J. Phys., B21:955 (1971).

    Article  Google Scholar 

  23. J. Sapriel, Phys. Rev., B12:5128 (1975).

    Google Scholar 

  24. L. A. Shuvalov, E. F. Dudnik and S. V. Wagin, Ferroelectrics, 65:143 (1985).

    Article  CAS  Google Scholar 

  25. L. G. Shabelnikov, V. Sh. Shekhtman and O. M. Tsarev, Fizika Tverdogo Tela, 18:1529 (1976).

    CAS  Google Scholar 

  26. N. Ziegler, M. Rosenfeld, W. Känzig and P. Fischer, Helv. Phys. Acta, 49:57 (1976).

    CAS  Google Scholar 

  27. A. M. Balagurov, I. D. Datt, B. N. Savenko and L. A. Shuvalov, Fizika Tverdogo Tela, 22:2735 (1980).

    CAS  Google Scholar 

  28. J. R. Barkley and W. Jeitschko, J. Appl. Phys., 44:938 (1973).

    Article  CAS  Google Scholar 

  29. J. Tomek, V. Janovec, J. Fousek and Z. Zikmund, Ferroelectrics, 20:253 (1978).

    Article  CAS  Google Scholar 

  30. V. K. Wadhawan and M. S. Somayazulu, Phase Transitions, 7:59 (1986).

    Article  CAS  Google Scholar 

  31. M. Glogarova and J. Fousek, Phys. Stat. Sol., (a) 15:579 (1973).

    Article  CAS  Google Scholar 

  32. A. M. Balagurov, N. C. Popa and B. N. Savenko, Phys. Stat. Sol., (b) 134:457 (1986).

    Article  CAS  Google Scholar 

  33. C. Boulesteix, Phys. Stat. Sol., (a) 86:11 (1984).

    Article  CAS  Google Scholar 

  34. S. Mendelson, Ferroelectrics 37:519 (1981).

    Article  CAS  Google Scholar 

  35. J. Fousek and M. Glogarova, Jap. J. Appl. Phys., 4:403 (1965).

    Article  CAS  Google Scholar 

  36. J. Fousek and M. Glogarova, Ferroelectrics, 11:469 (1976).

    Article  CAS  Google Scholar 

  37. S. W. Meeks and B. A. Auld, Appl. Phys. Lett., 47:102 (1985).

    Article  CAS  Google Scholar 

  38. A. Feisst and P. Koidl, Appl. Phys. Lett., 47:1125 (1985).

    Article  CAS  Google Scholar 

  39. W. Wang, Q. Zhon, Z. Geng and D. Feng, J. Crystal Growth, 79:706 (1986).

    Article  CAS  Google Scholar 

  40. W. Wang and M. Qi, J. Crystal Growth, 79:758 (1986).

    Article  CAS  Google Scholar 

  41. J. C. Burfoot and G. W. Taylor, “Polar Dielectrics and Their Applications”, Macmillan, London (1979).

    Google Scholar 

  42. J. W. Laughner, R. E. Newnham and L. E. Cross, Phys. Stat. Sol., (a) 56:K83 (1979).

    Article  CAS  Google Scholar 

  43. E. Bertagnolli, E. Kittinger and J. Tichf, J. Appl. Phys., 50:6267 (1979).

    Article  CAS  Google Scholar 

  44. K. Nassau, H. J. Levinstein and G. M. Loicono, J. Phys. Chem. Solids, 27:989 (1966).

    Article  CAS  Google Scholar 

  45. S. C. Abrahams, J. L. Bernstein, J. P. Chaminade and J. Ravez, J. Appl. Cryst., 16:96 (1983).

    Article  CAS  Google Scholar 

  46. P. W. Haycock and P. D. Townsend, Appl. Phys. Lett., 48:698 (1986).

    Article  CAS  Google Scholar 

  47. G. Metratand A. Deguin, Ferroelectrics, 13:527 (1976).

    Article  Google Scholar 

  48. B. Brezina and M. Havránková, Ferroelectrics Letters, 4:81 (1985).

    Google Scholar 

  49. P. J. Lock, Appl. Phys. Letters 19:390 (1971).

    Article  CAS  Google Scholar 

  50. B. BBrezina and M. Havránková, Crystal Res, and Technology, 20:781,787 (1985).

    Google Scholar 

  51. Z. Zikmund and J. Fousek, “Proc. Int. Symp. on Applications of Ferroelectries”

    Google Scholar 

  52. V. Wood, ed., Lehigh University, Bethlehem, Pa (1987).

    Google Scholar 

  53. Z. Zikmund and J. Fousek, Ferroelectrics, 79:73 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Březina, B., Fousek, J. (1989). Twinning in Crystals. In: Arend, H., Hulliger, J. (eds) Crystal Growth in Science and Technology. NATO ASI Series, vol 210. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0549-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0549-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7861-0

  • Online ISBN: 978-1-4613-0549-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics