Skip to main content

Part of the book series: NATO ASI Series ((ASIB,volume 209))

Abstract

Due to the very strong interaction between nucleons at short distances, the nuclear shape giving the lowest energy for most light nuclei is spherical as it is the one that packs the nucleons as close together as possible. The stability of this spherical shape may be enhanced by quantum mechanics and the Pauli principle. The mean field acting quantum mechanically on a single nucleon allows only certain orbitals which may be filled with protons and neutrons according to the Pauli. rule. For a spherical mean field the orbitals are grouped in degenerate energy levels characterised by the total angular momentum j of the single nucleon. In this shell model of the nucleus energy gaps arise as each of the orbitals is filled. Hence nuclei near closed shells are especially stable and are spherical in their lowest states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V M Strutinski; Nucl. Phys. A95 420 (1967) and Al22 1 (1968)

    Google Scholar 

  2. S M Polikanov et al; 7h. Eksp. Teor. Fiz. 42 1464 (1962) and translated in Sov. Phys. JETP 15 1016

    Google Scholar 

  3. H J Specht et al; Phys. Lett. 41B 43 (1972)

    Article  CAS  Google Scholar 

  4. H Backe et al; Phys. Rev. Lett. 41 490 (1979)

    Article  Google Scholar 

  5. G Ulfert et al; Nucl. Instr. Meth 148 369 (1978)

    Article  CAS  Google Scholar 

  6. V Metag et al; Hyperfine Interactions 1 405 (1976)

    Article  CAS  Google Scholar 

  7. D Habs et al; Phys. Rev. Lett. 38 387 (1977)

    Article  CAS  Google Scholar 

  8. R Bengtsson et al; Phys. Lett 57B 301 (1975)

    Google Scholar 

  9. K Neergard and V V Pashkevich; Phys. Lett. 59B 218 (1975)

    Google Scholar 

  10. A Bohr and B Mottleson; Nucl. Structure Vol. 2 Benjamin, p592 (1975)

    Google Scholar 

  11. I Ragnarsson et al; Nucl. Phys. A347 287 (1980)

    Article  Google Scholar 

  12. J Dudek et al; Phys. Rev. Lett. 59 405 (1987)

    Article  Google Scholar 

  13. S Aberg; Workshop in Nucl. Str. at High Spin, RisO, Denmark, p 5, May 1983

    Google Scholar 

  14. J Burde et al; Phys. Rev. Lett. 48 (1982) 530

    Article  CAS  Google Scholar 

  15. T C Khoo et al; Phys. Rev. Lett. 41 1027 (1978)

    Article  CAS  Google Scholar 

  16. P J Nolan; Proc. Int. Nucl. Phys. Conf. Harrogate, U.K. eds J L Durell et al, IOP Conf. Series 86 Vol. 2 155 (1986)

    Google Scholar 

  17. J F Sharpey-Schafer and J Simpson; Prog. in Part. and Nucl. Phys. 21 293 (1988)

    CAS  Google Scholar 

  18. Y. Schutz et al; Phys. Rev. Lett. 48 1534 (1982)

    Article  CAS  Google Scholar 

  19. P J Twin et al; Nucl. Phys. A409 343c (1983)

    Google Scholar 

  20. B M Nyakó et al; Phys. Rev. Lett. 52 507 (1984)

    Article  Google Scholar 

  21. O Andersen et al; Phys. Rev. Lett. 43 687 (1979)

    Article  CAS  Google Scholar 

  22. B Herskind; J. de. Phys. 41 C10–106 (1980)

    Google Scholar 

  23. P J Nolan et al; Phys. Lett. 128B 285 (1983)

    Google Scholar 

  24. J F Sharpey-Schafer et al; Proc. XXIV Winter Meeting on Nucl. Phys. Bormio, Italy, January 1986 Univ. degli studi di Milano, Supp. 49, p669

    Google Scholar 

  25. de Voigt et al; Phys. Rev. Lett. 59 270 (1987)

    Article  PubMed  Google Scholar 

  26. J Dudek and W Nazarewicz; Phys. Rev. C31 298 (1985)

    Article  CAS  Google Scholar 

  27. P J Nolan et al; J, Phys. Gil L17 (1985)

    Google Scholar 

  28. A J Kirwan et al; Daresbury Annual Report 1986/87, Nucl. Str. Appendix, p28

    Google Scholar 

  29. M A Riley et al; Nucl. Phys. A486 456 (1988)

    Article  Google Scholar 

  30. A J Kirwan et a1; Phys. Rev. Lett. 58 467 (1987)

    Article  PubMed  CAS  Google Scholar 

  31. P J Twin et al; Phys. Rev. Lett. 57 811 (1986)

    Article  PubMed  CAS  Google Scholar 

  32. P J Nolan et al; NIM A236 95 (1985)

    Article  Google Scholar 

  33. S $berg; Proc. XXV Int. Winter Meeting on Nucl. Phys. Bormio, Italy January 1987; Univ. degli studi di Milano, Supp. 56 p661

    Google Scholar 

  34. P 0 TjOm et al; Phys. Rev.Lett. 55 2405 (1985)

    Article  Google Scholar 

  35. J F Sharpey-Schafer; Proc. Int. Conf. on Weak and Electromag. Interactions in Nuclei (Springer) ed. H V Klapdor, 88 (1986)

    Google Scholar 

  36. M A Bentley et al; Phys. Rev. Lett. 59 2141 (1987)

    Article  PubMed  CAS  Google Scholar 

  37. J C Bacelar et al; Phys. Rev. Lett. 57 3019 (1986)

    Article  PubMed  CAS  Google Scholar 

  38. N. Rowley; private communication (1988)

    Google Scholar 

  39. B M Nyakó et al; Phys. Rev. Lett. 56 2680 (1986)

    Article  PubMed  Google Scholar 

  40. M A Bentley et al; submitted to J. Phys. G (1988)

    Google Scholar 

  41. E M Beck et al; Phys. Rev. Lett. 58 2182 (1987)

    Article  PubMed  CAS  Google Scholar 

  42. E M Beck et al; Phys. Lett. B195 531 (1987)

    CAS  Google Scholar 

  43. R Wadsworth et al; J. Phys. G13 L207 (1987)

    Article  CAS  Google Scholar 

  44. Y-X Luo et al; Z. Phys. A329 125 (1988)

    CAS  Google Scholar 

  45. R. Chasman; Phys. Lett. B187 219 (1987)

    CAS  Google Scholar 

  46. A Ruckelshäusen et al; Phys. Rev. Lett. 56 2357 (1986)

    Article  Google Scholar 

  47. T L Khoo; Proc. Int. Conf. on Weak and Electromag. Interactions in Nuclei (Springer) ed. H V Klapdov 98 (1986)

    Google Scholar 

  48. B Haas et al; Phys. Rev. Lett. 60 503 (1988)

    Article  PubMed  CAS  Google Scholar 

  49. M A Deleplanque et al; Phys. Rev. Lett. 60 1626 (1988)

    Article  PubMed  CAS  Google Scholar 

  50. G-E Rathke et al; to be published

    Google Scholar 

  51. P Fallon et al; Phys. Lett. B. (in press)

    Google Scholar 

  52. T Rzaca-Urban et al; Z. Phys. A328 379 (1987)

    CAS  Google Scholar 

  53. J Burde et al; Proc. Conf. on High Spin Nucl. Str. and Novel Nuclear Shapes, Argonne, U.S.A.;p 36 April 1988

    Google Scholar 

  54. A O Macchiavelli et al; Phys. Rev. C38 1088 (1988)

    Article  CAS  Google Scholar 

  55. J Dudek; JIHIR, Oak Ridge, Document 88–01

    Google Scholar 

  56. T Bengtsson et al; Phys. Lett. B208 39 (1988)

    CAS  Google Scholar 

  57. S. Åberg et al; XXVII Int. Winter Meeting on Nucl. Phys., Bormio. Italy; Univ. degli studi di Milano, Supp. 63 p 546 January 1988

    Google Scholar 

  58. S Åberg et al; Proc. 3rd Int. Conf on Nucl-Nucl Collisions, St. Malo, France; Nucl. Phys. A488 147C (June 1988)

    Google Scholar 

  59. S $berg; private communication

    Google Scholar 

  60. B Herskind et al; Phys. Rev. Lett. 59 2416 (1987)

    Article  PubMed  CAS  Google Scholar 

  61. I Ragnarsson and S Sberg; Phys. Lett. B180 191 (1986)

    CAS  Google Scholar 

  62. B Herskind and K Schiffer; Proc. Int. School “Enrico Fermi”, Societa Italiana Di Fisica (Varenna, 1987 )

    Google Scholar 

  63. P Taras et al; Phys. Rev. Lett. 61 1348 (1988)

    Article  PubMed  CAS  Google Scholar 

  64. P J Twin; Proc. Conf. on Contempt. Topics in Nucl. Str. Phys.; Cocoyoc, Mexico (June 1988)

    Google Scholar 

  65. M A Bentley-et al; to be published in J. Phys. G

    Google Scholar 

  66. R Boltzmann et al; Phys. Lett. B195 321 (1987)

    Google Scholar 

  67. A Nourreddine et al; Phys. Rev. C36 2687 (1987)

    Article  CAS  Google Scholar 

  68. J Gascon; private communication

    Google Scholar 

  69. Y R Shimizu et al; Phys. Lett. B198 33 (1987)

    CAS  Google Scholar 

  70. W Nazarewicz et al; Phys. Lett. B196 404 (1987)

    CAS  Google Scholar 

  71. M A Deleplanque and R M Diamond Eds, Gammasphere, a proposal; Berkeley, U.S.A., March 1988

    Google Scholar 

  72. R M Lieder Ed;, Euroball design study, KFA Jülich, BRD, May 1988

    Google Scholar 

  73. O C Kistner et al; Phys. Rev. C17 17 (1978)

    Google Scholar 

  74. L L Riedinger et al; Phys. Rev. Lett. 44 (1980) 568

    Article  CAS  Google Scholar 

  75. M Blann and T T Komoto; Physica Scripta 24 93 (1981)

    Article  CAS  Google Scholar 

  76. J Dudek et al; Phys. Lett. B211 (1988) 252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Sharpey-Schafer, J.F. (1989). Superdeformation. In: Koch, J.H., de Witt Huberts, P.K.A. (eds) New Aspects of Nuclear Dynamics. NATO ASI Series, vol 209. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0547-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0547-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7860-3

  • Online ISBN: 978-1-4613-0547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics