Skip to main content

Functions, Biogenesis and Pathology of Peroxisomes in Man

  • Chapter
Organelles in Eukaryotic Cells

Abstract

Peroxisomes (microbodies; microperoxisomes), were first described morphologically by Rhodin (1) in 1954 and characterized biochemically by De Duve and coworkers (2) in the early 1960’s. They are defined as intracellular organelles bounded by a single membrane and containing catalase and H202-producing oxidases. This definition emphasizes the oxidative functions of peroxisomes. However, the peroxisome is a highly versatile organelle. While oxidative processes are certainly a characteristic feature of the metabolic pathways in which peroxisomes participate other types of reactions, too, occur in peroxisomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Rhodin. Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Ph.D. thesis. Aktiebolaget Godoil, Stockholm, pp. 1–76 (1954)

    Google Scholar 

  2. H. Beaufay, P. Jacques, P. Baudhuin, O.Z. Sellinger, J. Berthet and C. De Duve. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of particles by means of density equilibration in various gradients. Biochem. J. 92: 184–205 (1964)

    Google Scholar 

  3. P. Borst. Animal peroxisomes (microbodies), lipid biosynthesis and the Zellweger syndrome. Trends Biochem. Sci. 8: 269–272 (1983)

    Article  CAS  Google Scholar 

  4. S. Goldfischer and J.K. Reddy. Peroxisomes (microbodies) in cell pathology. Int. Rev. Exp. Path. 26: 45–84 (1984)

    PubMed  CAS  Google Scholar 

  5. R.B.H. Schutgens, H.S.A. Heymans, R.J.A. Wanders, H. van den Bosch and J.M. Tager. Peroxisomal disorders: a newly recognized group of genetic diseases. Eur. J. Pediatr. 144: 430–440 (1986)

    Article  PubMed  CAS  Google Scholar 

  6. H.W. Moser, S. Naidu, A.J. Kumar and A.E. Rosenbaum. The Adrenoleukodystrophies. CRC Critical Reviews on Neurobiology 3: 29–83 (1987)

    CAS  Google Scholar 

  7. H. Zellweger. The cerebro-hepato-renal (Zellweger) syndrome and other peroxisomal disorders. Developm. Med. Child Neurol. 29: 821–829 (1987)

    Article  CAS  Google Scholar 

  8. R.J.A. Wanders, H.S.A. Heymans, R.B.H. Schutgens, P.G. Barth, H. van den Bosch and J.M. Tager. Peroxisomal disorders in neurology. J. Neurol. Sci. 88: 1–39 (1988)

    Article  CAS  Google Scholar 

  9. R.J.A. Wanders, H.S.A. Heymans, R.B.H. Schutgens, P.G. Barth, H. van den Bosch and J.M. Tager. Peroxisomal disorders in neurology. J. Neurol. Sci. 88: 1–39 (1988)

    Article  CAS  Google Scholar 

  10. S. Goldfischer, C.L. Moore, A.B. Johnson, A.J. Spiro, M.P. Valsamis, H.K. Wisniewski, R.H. Ritch, W.T. Norton, I. Rapin and L.M. Gartner. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182: 62–64 (1973)

    Article  PubMed  CAS  Google Scholar 

  11. S. Kolvraa and N. Gregersen. In vitro studies in the oxidation of medium-chain dicarboxylic acids in rat liver. Biochim. Biophys. Acta 876: 515–525 (1986)

    Google Scholar 

  12. J. Vamecq and J.P. Draye. Interactions between the α- and β-oxidations of fatty acids. J. Biochem. 102: 225–234 (1987)

    PubMed  CAS  Google Scholar 

  13. T. Noguchi and Y. Tokada. Peroxisomal localization of alanine:glyoxylate aminotransferase in human liver. Arch. Biochem. Biophys. 196: 645–647 (1979)

    CAS  Google Scholar 

  14. T. Noguchi. Amino acid metabolism in animal peroxisomes. In: Peroxisomes in Biology and Medicine (H.D. Fahimi and H. Sies, eds.), Springer, Heidelberg, pp. 234–243 (1987)

    Google Scholar 

  15. S.J. Mihalik and W.J. Rhead. L-Pipecolic acid oxidation in the rabbit and Cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J. Biol. Chem. 264: 2509–2517 (1989)

    PubMed  CAS  Google Scholar 

  16. R.J.A. Wanders, G.J. Romeyn, C.W.T. van Roermund, R.B.H. Schutgens, H. van den Bosch and J.M. Tager. Identification of L-pipecolic oxidase in human liver and its deficiency in the Zellweger syndrome. Biochem. Biophys. Res. Commun., 154: 33–38 (1989)

    Google Scholar 

  17. A.K. Hajra and J.E. Bishop. Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann. N.Y. Acad. Sci 386: 170–182 (1982)

    Article  CAS  Google Scholar 

  18. O.H. Morand, R.A. Zoeller and C.R.H. Raetz. Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 263: (1988)

    Google Scholar 

  19. P.B. Lazarow and C. de Duve. A fatty acid acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by clofibrate, a hypolipidemic drug. Proc. Natl. Acad. Sci. USA 73: 2043–2046 (1976)

    Article  PubMed  CAS  Google Scholar 

  20. T. Hashimoto. Individual peroxisomal β-oxidation enzymes. Ann. N.Y. Acad. Sci. 386: 5–12 (1982)

    Article  PubMed  CAS  Google Scholar 

  21. T. Hashimoto. Comparison of enzymes of lipid β-oxidation in peroxisomes and mitochondria. In: Peroxisomes in Biology and Medicine (H.D. Fahimi and H. Sies, eds.), Springer, Heidelberg, pp. 97–104 (1987)

    Google Scholar 

  22. J. Bremer. Carnitine and its role in fatty acid metabolism. Trends Biochem. Sci. 2: 207–209 (1977)

    CAS  Google Scholar 

  23. I. Singh, A.B. Moser, S. Goldfischer and H.W. Moser. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 81: 4203–4207 (1984)

    Article  PubMed  CAS  Google Scholar 

  24. A. Bhusnan, R.P. Singh and I. Singh. Characterization of rat brain microsomal acyl-coenzyme A ligase: diferent enzymes for the synthesis of palimtoyl-CoA and lignoceroyl-CoA. Arch. Biochem. Biophys. 246: 374–380 (1986)

    Google Scholar 

  25. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. Van Wijland, R.B.H. Schutgens, J. Heikoop, H. Van den Bosch, A.W. Schram and J.M. Tager. Peroxisomal fatty acid β-oxidation in relation to the accumulation of very long chain fatty acids in peroxisomal disorders. J. Clin. Invest. 80: 1778–1783 (1987)

    Article  CAS  Google Scholar 

  26. H. Singh, N. Derwas and A. Poulos. Very long chain fatty acid p-oxidation by rat liver mitochondria and peroxisomes. Arch. Biochem. Biophys. 359: 382–390 (1987)

    Article  Google Scholar 

  27. S. Miyazawa, T. Hashimoto and S. Yokota. Identity of long-chain acyl-CoA synthetase in microsomes, mitochondria and peroxisomes in rat liver. J. Biochem. 98: 723–733 (1985)

    PubMed  CAS  Google Scholar 

  28. I. Singh, A. Bhushan, N.K. Relan and T. Hashimoto. Acyl-CoA ligases from rat brain microsomes: an immunochemical study. Biochim. Biophys. Acta 963: 509–514 (1985)

    Google Scholar 

  29. T. Osumi, T. Hashimoto and N. Ui. Purification and properties of acyl-CoA oxidase from rat liver. J. Biochem. 87: 1735–1746 (1980)

    PubMed  CAS  Google Scholar 

  30. P.B. Lazarow. Rat liver peroxisomes catalyse the p-oxidation of fatty acids. J. Biol. Chem. 253: 1522–1528 (1978)

    PubMed  CAS  Google Scholar 

  31. G.P. Mannaerts, L.I. De Beer, J. Thomas and R.J. De Schepper. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J. Biol. Chem. 254: 4585–4595 (1979)

    PubMed  CAS  Google Scholar 

  32. S. Goldfischer and H.J. Sobel. Peroxisomes and bile-acid synthesis. Gasteroenterology 81: 196–197 (1981)

    CAS  Google Scholar 

  33. F. Kase, I. Björkhem, and J.I. Pedersen. Formation of cholic acid from 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid by rat-liver peroxisomes. J. Lipid. Res. 24: 1560–1567 (1983)

    CAS  Google Scholar 

  34. S. Goldfischer, J. Collins, I. Rapin, P. Neumann, W. Neglia, A.J. Spiro, T. Ishii, F. Roels, J. Vamecq and R. Van Hoof. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J. Pediatr. 180: 25–32 (1986)

    Google Scholar 

  35. A.W. Schram, S. Goldfischer, C.W.T. Van Roermund, E.M. Brouwer-Kelder, J. Collins, T. Hashimoto, H.S.A. Heymans, H. Van den Bosch, R.B.H. Schutgens, J.M. Tager and R.J.A. Wanders. Human peroxisomal 3-oxo-acyl-CoA thiolase deficiency. Proc. Natl. Acad. Sci. USA 84: 2494–2497 (1987)

    Article  PubMed  CAS  Google Scholar 

  36. P.A. Watkins, W.W. Chen, C.J. Harris, G. Hoefler, S. Hoefler, D.C. Blake, A. Balfe, R.I. Kelley, A.B. Moser, M.E. Beard and H.W. Moser. Peroxisomal bifunctional enzyme deficiency. J. Clin. Invest. 83: 771–777 (1989)

    Article  PubMed  CAS  Google Scholar 

  37. B.T. Poll-Tn£, F. Roels, H. Ogier, J. Scotto, J. Vamecq, R.B.H. Schutgens, C.W.T. Van Roermund, M.J.A. Van Wijland, A.W. Schram, J.M. Tager and J.M. Saudubray. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo neonatal adrenoleukodystrophy). Am. J. Hum. Genet. 42: 422–434 (1988)

    Google Scholar 

  38. M. Casteels, L. Schepers, J. Van Eldere, H. Eyssen and G.P. Mannaerts. Inhibition of 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid oxidation and of bile acid secretion in rat liver by fatty acids. J. Biol. Chem. 263: 4654–4661 (1988)

    PubMed  CAS  Google Scholar 

  39. J.I. Pedersen, E. Hvattum, T. Flatabo and I. Björkhem. Clofibrate does not induce peroxisomal 3α, 7α, 12α-trihydroxy-5β-cholestanoyl coenzyme A oxidation in rat liver: evidence that this reaction is catalyzed by an enzyme system different from that of peroxisomal acyl-CoA oxidation. Biochem. Int. 17: 163–169 (1988)

    PubMed  CAS  Google Scholar 

  40. J.I. Pedersen and J. Gustafson. Conversion of 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett. 121: 345–348 (1980)

    Article  PubMed  CAS  Google Scholar 

  41. L. Schepers, M. Casteels, K. Verheyden, G. Parmentier, S. Asselberghs, H.J. Eyssen and G.P. Mannaerts. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. Biochem. J. 257: 221–229 (1989)

    PubMed  CAS  Google Scholar 

  42. O. Lazo, M. Contreras, A. Bhushan, W. Stanley and I. Singh. Adrenoleukodystrophy: impaired oxidation of fatty acids due to peroxisomal lignoceroyl-CoA deficiency. Arch. Biochem. Biophys. 270: 722–728 (1989)

    CAS  Google Scholar 

  43. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, R.B.H. Schutgens, H. van den Bosch and J.M. Tager. Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem. Biophys. Res. Commun. 153: 618–624 (1988)

    CAS  Google Scholar 

  44. O.H. Skjeldal and O. Stokke. The subcellular localization of phytanic acid oxidase in rat liver. Biochim. Biophys. Acta. 921: 38–42.

    Google Scholar 

  45. J.M.F. Trijbels, L.A.H. Monnens, G. Melis, M. Van den Broek-van Essen and M. Bruckwilder. Localization of pipecolic acid metabolism in rat liver peroxisomes: probable explanation for hyperpipecolataemia in Zellweger syndrome. J. Inher. Metab. Dis. 10: 128–134 (1987)

    Article  PubMed  CAS  Google Scholar 

  46. K. Zaar, S. AngermUller, A. Vfflkl and H.D. Fahimi. Pipecolic acid is oxidized by renal and hepatic peroxisomes: Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp. Cell Res. 164: 267–271 (1986)

    Article  CAS  Google Scholar 

  47. C.J. Danpure and P.R. Jennings. Peroxisomal alanine: glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 201: 20–24 (1986)

    Article  PubMed  CAS  Google Scholar 

  48. G.A. Keller, M.C. Barton, D.J. Shapiro and S.J. Singer. 3-Hydroxy-3-methylglutaryl coenzyme A reductase is present in peroxidomes in normal rat liver cells. Proc. Natl. Acad. Sci. USA 82: 770–774 (1985)

    Article  PubMed  CAS  Google Scholar 

  49. S.L. Thompson, R. Burrow, R.J. Laub and S.K. Krisans. Cholesterol synthesis in rat liver peroxisomes. J. Biol. Chem. 262: 17420–17425 (1987)

    CAS  Google Scholar 

  50. E.L. Appelkvist and G. Dallner. Dolichol metabolism and peroxisomes. In: H.D. Fahimi and H. Sies (Eds.) Peroxisomes in Biology and Medicine. Springer, Heidelberg pp. 53–66

    Google Scholar 

  51. M.E. Beard, R. Baker, P. Conomos, D. Pugatch and E. Holtzman. Oxidation of oxalate and polyamines by rat liver peroxisomes. J. Histochem. Cytochem. 33: 460–464 (1985)

    Article  PubMed  CAS  Google Scholar 

  52. P.B. Lazarow and Y. Fujiki. Biogenesis of peroxisomes. Ann. Rev. Cell Biol. 1: 489–530 (1985)

    Article  CAS  Google Scholar 

  53. P. Borst. Review. How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Acta 866: 179–203 (1986)

    PubMed  CAS  Google Scholar 

  54. P. Borst. Peroxisome biogenesis revisited. Biochim. Biophys. Acta. 100: 1–13 (1989)

    Google Scholar 

  55. S.J. Gould, G.A. Keller and S. Subramani. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105: 2923–2931 (1987)

    Article  PubMed  CAS  Google Scholar 

  56. S. Miura, M. Mori, M. Takiguchi, M. Tatibana, S. Furuta, S. Miyazawa and T. Hashimoto. Biosynthesis and intracellular transport of enzymes of peroxisomal β-oxidation. J. Biol. Chem. 259: 6397–6402 (1984)

    PubMed  CAS  Google Scholar 

  57. Y. Fujiki, R.A. Rachubinski, R.M. Mortensen and P.B. Lazarow. Synthesis of 3-ketoacyl-CoA thiolase of rat liver peroxisomes on free polyribosomes as a larger precursor. Biochem. J. 226: 697–704 (1985)

    PubMed  CAS  Google Scholar 

  58. A.W. Schram, A. Strijland, T. Hashimoto, R.J.A. Wanders, R.B.H. Schutgens, H. Van Den Bosch and J.M. Tager. Biosynthesis and maturation of peroxisomal β-oxidatiori enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease. Proc. Natl. Acad. Sci. USA 83: 6156–6158 (1986)

    Article  PubMed  CAS  Google Scholar 

  59. J.M. Tager, W.A. Ten Harmsen Van Der Beek, R.J.A. Wanders, T. Hashimoto, H.S.A. Heymans, H. Van Den Bosch, R.B.H. Schutgens and A.W. Schram. Peroxisomal β-oxidation enzyme proteins in the Zellweger syndrome. Biochem. Biophys. Res. Commun. 126: 1269–1275 (1985)

    CAS  Google Scholar 

  60. Y. Suzuki, T. Orii, and T. Hashimoto. Biosynthesis of peroxisomal p-oxidation enzymes in infants with Zellweger syndrome. J. Inher. Metab. Dis. 9: 292–296 (1986)

    CAS  Google Scholar 

  61. W.W. Chen, P.A. Watkins, T. Osumi, T. Hashimoto and H.W. Moser. Peroxisomal β-oxidation enzyme proteins in adrenoleukodystrophy: distinction between X-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 84: 1425–1428 (1987)

    Article  PubMed  CAS  Google Scholar 

  62. N. Pfanner, F.-U. Hartl and W. Neupert. Review. Import of proteins into mitochondria: a multistep process. Eur. J. Biochem. 175: 205–212

    Google Scholar 

  63. R.B.H. Schutgens, H.S.A. Heymans, R.J.A. Wanders, J.W.E. Oorthuys, J.M. Tager, G. Schrakamp, H. Van den Bosch and F.A. Beemer. Multiple peroxisomal enzyme deficiencies in rhizomelic chondrodysplasia punctata. Comparison with Zellweger syndrome, Conradi-Hünermann syndrome and X-linked dominant type of Chondrodysplasia punctata. In: Advances in Clinical Enzymology. Vol. 6 Enzymes-Tools and Targets (D.M. Goldberg, D.W. Moss, E. Schmidt and F.W. Schmidt, eds) Karger, Basel pp. 57–65 (1988)

    Google Scholar 

  64. G.H. Hoefler, S. Hoefler, P.A. Watkins, W.W. Chen, A. Moser, V. Baldwin, B. McGillivary, J. Charro, J.M. Friedman, L. Rutledge, T. Hashimoto and H.W. Moser. Biochemical abnormalities in rhizomelic chondrodysplasia punctata. J. Pediatr. 112: 726–733 (1985)

    Google Scholar 

  65. J. Heikoop, R.J.A. Wanders, R.B.H. Schutgens, A.W. Schram and J.M. Tager. Maturation of peroxisomal thiolase protein in rhizomelic chondrodysplasia punctata (RCDP). Abstracts Int. Cortgr. Cell Biol. p. 341 (1988)

    Google Scholar 

  66. T.Mueller, N.K. Honey, L.E. Little, A.L. Miller and T.S. Shows. Mucolipidosis II and III. The genetic relationships between two disorders of lysosomal enzyme biosynthesis. J. Clin. Invest. 72: 1016–1023 (1983)

    Google Scholar 

  67. Y. Suzuki, N. Shimazawa, T. Orii, N. Igarashi, N. Kono, A. Matsui, Y. Inoue, S. Yokota and T. Hashimoto. Zellweger-like syndrome with detectable hepatic peroxisomes: A variant fom of peroxisomal disorder. J. Pediatr. 113: 841–845 (1988)

    Article  PubMed  CAS  Google Scholar 

  68. M. Paterneau-Jouas, F. Taillard, A. Gansmuller, R. Schutgens, J. Mikol, M.-S. Aigrot and C. Sereni. Clinical, biochemical, pathological “Zellweger-like” disorder with morphologically normal peroxisomes, in: Lipid Storage disorders. Biological and Medical Aspects (R. Salvayre, L. Douste-Blazy, and S. Gatt, eds) p. 805–807(1989)

    Google Scholar 

  69. C.J. Danpure, P.J. Cooper, P.J. Wise, and P.R. Jennings. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: Peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J. Cell. Biol. 108: 1345–1352 (1989)

    Article  PubMed  CAS  Google Scholar 

  70. S. Brul, A. Westerveld, A. Strijland, R.J.A. Wanders, A.W. Schram, H.S.A. Heymans, R.B.H. Schutgens, H. Van Den Bosch and J.M. Tager. Genetic heterogeneity in the cerebro-hepato-renal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions: A study using complementation analysis. J. Clin. Invest. 81: 1710–1715 (1988)

    Article  PubMed  CAS  Google Scholar 

  71. A.A. Roscher, S. Hoefler, G. Hoefler, E. Paschke, F. Paltauf, A. Moser and H. Moser. Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis. A complementation study involving cell lines from 19 patients, Pediatr. Res. In press (1989)

    Google Scholar 

  72. B.T. Poll-Thé, O.H. Skjeldal, O. Stokke, A. Poulos, F. Demaugre and J.M. Saudubray. Phytanic acid alpha-oxidation and complementation analysis of classical Refsum disease and peroxisomal disorders. Human. Genet. 81: 175–181 (1989)

    Article  Google Scholar 

  73. R.J.A. Wanders, M. Kos, B. Roest, A.J. Meijer, G. Schrakamp, H.S.A. Heymans, W.H.H. Tegelaers, H. Van Den Bosch, R.B.H. Schutgens and J.M. Tager. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome. Biochem. Biophys. Res. Commun. 123: 19054–1061 (1984)

    Article  Google Scholar 

  74. S. Brul, A.E.C. Wiemer, A. Westerveld, A. Strijland, R.J.A. Wanders, A.W. Schram, H.S.A. Heymans, R.B.H. Schutgens, H. Van Den Bosch and J.M. Tager. Kinetics of the assembly of peroxisomes after fusion of complementary cell lines from patients with the cerebro-hepato-renal (Zellweger) syndrome and related disorders. Biochem. Biophys. Res. Commun. 152: 1083–1089 (1988)

    Article  PubMed  CAS  Google Scholar 

  75. Y. Fujiki, S. Fowler, H. Shio, A.L. Hubbard and P.B. Lazarow. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: Comparison with endoplasmic reticulum and mitochondrial membranes. J. Cell Biol. 93: 103–110 (1982)

    Article  PubMed  CAS  Google Scholar 

  76. F.-U. Hartl, W.W. Just, A. Köster and H. Schimassek. Improved isolation and purification of rat liver peroxisomes by combined rate zonal and equilibrium density centrifugation. Arch. Biochem. Biophys. 237: 124–134 (1985)

    CAS  Google Scholar 

  77. T. Hashimoto, T. Kuwabara, N. Usuda and T. Nagata. Purification of membrane polypeptides of rat liver peroxisomes. J. Biochem. (Tokyo) 100: 301–310 (1986)

    CAS  Google Scholar 

  78. Y. Fujiki, R.A. Rachubinski and P.B. Lazarow. Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. 81: 7127–7131 (1984)

    Article  PubMed  CAS  Google Scholar 

  79. Y. Suzuki, T. Orii, M. Takaguchi, M. Mori, M. Hijikata and T. Hashimoto. Biosynthesis of membrane polypeptides of rat liver peroxisomes. J. Biochem. (Tokyo) 101: 491–496 (1987)

    CAS  Google Scholar 

  80. M.J. Santos, J.M. Ojeda, J. Garrido and F. Leighton. Peroxisomal organization in normal and cerebro-hepato-renal (Zellweger) syndrome fibroblasts. Proc. Natl. Acad. Sci. USA 82: 6556–6560 (1985)

    Google Scholar 

  81. P.B. Lazarow, Y. Fujiki, G.M. Small, P. Watkins and H.W. Moser. Presence of the peroxisomal 22 kDa integral membrane protein in the liver of a person lacking recognizable peroxisomes (Zellweger syndrome). Proc. Natl. Acad. Sci. USA 83: 9193–9196 (1986)

    Article  PubMed  CAS  Google Scholar 

  82. Y. Suzuki, N. Shimozawa, T. Orii, J. Aikawa, K. Tada, T. Kuwabara and T. Hashimoto. Biosynthesis of peroxisomal membrane proteins in infants with Zellweger syndrome. J. Inher. Metab. Dis. 10: 297–300 (1987)

    Article  PubMed  CAS  Google Scholar 

  83. E.A.C. Wiemer, S. Brul, W.W. Just, R. Van Driel, E. Brouwer-Kelder, M. Van Den Berg, P.J. Weijers, R.B.H. Schutgens, H. Van Den Bosch, A.W. Schram, R.J.A. Wanders and J.M. Tager. Presence of peroxiosmal membrane proteins in liver and fibroblasts from patients with the Zellweger syndrome and related disorders: evidence for the existence of peroxisomal ghosts. Submitted for publication

    Google Scholar 

  84. M.J. Santos, T. Imanaka, H. Shio, G.M. Small and P.B. Lazarow. Peroxisomal membrane ghosts in Zellweger syndrome-aberrant organelle assembly. Science 239: 1536–1538 (1988)

    Article  PubMed  CAS  Google Scholar 

  85. M.J. Santos, T. Imanaka, H. Shio and P.B. Lazarow. Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J. Biol. Chem. 263: 10502–10509 (1988)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Wiemer, E.A.C. et al. (1989). Functions, Biogenesis and Pathology of Peroxisomes in Man. In: Tager, J.M., Azzi, A., Papa, S., Guerrieri, F. (eds) Organelles in Eukaryotic Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0545-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0545-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7859-7

  • Online ISBN: 978-1-4613-0545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics