Self-Diffusion of Poly(Dimethylsiloxane) Chains

  • Leoneio Garrido
  • Jerome L. Ackerman
  • James E. Mark


In this review we have described the basic concepts involved in the diffusional behavior of polymers and the NMR technique used to measure diffusion of poly(dimethylsiloxane) (PDMS) in melts and in model networks. We have found that the final value calculated for the exponent α in the scaling law D s α M α for diffusion constant D with molecular weight M depends strongly on the fitting procedures used in data analysis. Only for very low molecular weights the exponent is affected by free volume effects. The self-diffusion of PDMS chains in melts obeys the predicted dependence on the molecular weight while their diffusion in PDMS model networks remains unclear, in part because of the short range of M studied. For melts, low molecular weight polymers behave in accordance with the Rouse model while their hydrodynamic behavior for M n ≥ 4200 g-mol¯1 might be explained in terms of the reptation model. The value found for the exponent α is -2.02, in excellent agreement with the theoretical prediction.


Free Volume Free Volume Fraction Nuclear Magnetic Relaxation Molecular Weight Dependence Reptation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tirrell, “Polymer Self-diffusion in Entangled Systems”, Rubber Chem. Technol., 57, 523–556 (1984).CrossRefGoogle Scholar
  2. 2.
    E.D. von Meerwall, “Pulsed and Steady Field Gradient NMR Diffusion Measurements in Polymers”, Rubber Chem. Technol., 58, 527–560 (1984).CrossRefGoogle Scholar
  3. 3.
    L. Garrido, J.E. Mark, J.L. Ackerman and R.A. Kinsey, “Studies of Self-diffusion of Poly(dimethylsiloxane) Chains in PDMS Model Networks”, J. Polym. Sci., Polym. Phys. Ed., 26, 2367 (1988).CrossRefGoogle Scholar
  4. 4.
    D.W. McCall, E.W. Anderson and C.M. Higgins, “Self-diffusion in Linear Dimethylsiloxanes”, J. Chem. Phys., 34, 804–808 (1961).CrossRefGoogle Scholar
  5. 5.
    D.W. McCall and C.M. Higgins, “Self-diffusion in Linear Polydimethyl Siloxane Liquids”, Appl. Phys. Lett., 7, 153–154 (1965).CrossRefGoogle Scholar
  6. 6.
    J.E. Tanner, “Diffusion in a Polymer Matrix”, Macromolecules, 4, 748–750 (1971).CrossRefGoogle Scholar
  7. 7.
    A.N. Gent and R.H. Tobias, “Diffusion and Equilibrium Swelling of Macromolecular Networks by Their Linear Homologs”, J. Polym. Sci. Polym. Phys. Ed., 20, 2317–2327 (1982).CrossRefGoogle Scholar
  8. 8.
    J.E. Mark and Z.M. Zhang, “The Use of Model Networks With Reptating Chains to Study Extraction Efficiencies”, J. Polym. Sci., Polym. Phys. Ed., 21, 1971–1979 (1983).CrossRefGoogle Scholar
  9. 9.
    L. Garrido and J.E. Mark, “Extraction and Sorption Studies Using Linear Polymer Chains and Model Networks”, J. Polym. Sci., Polym. Phys. Ed., 23, 1933–1940 (1985).CrossRefGoogle Scholar
  10. 10.
    W Noll, The Chemistry and Technology of Silicones, Academic Press, New York (1968).Google Scholar
  11. 11.
    W.J. Bobear, in: Rubber Technology (M. Morton, ed.), Van Nostrand Reinhold, New York (1973).Google Scholar
  12. 12.
    P.J. Flory and B. Erman, “Theory of Elasticity of Polymer Networks. 3”, Macromolecules, 15, 800–806 (1982), and “Relationship Between Stress, Strain and Molecular Constitution of Polymer Networks. Comparison of Theory With Experiments”, Macromolecules, 15, 806–811 (1982).CrossRefGoogle Scholar
  13. 13.
    J.E. Mark, “The Use of Model Polymer Networks to Elucidate Molecular Aspects of Rubberlike Elasticity”, Adv. Polym. Sci., 44, 1–26 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Gottlieb, C.W. Macosko, G.S. Benjamin, K.O. Meyers and E.W. Merrill, “Equilibrium Modulus of Model Poly(dimethylsiloxane) Networks”, Macromolecules, 14, 1039–1046 (1981).CrossRefGoogle Scholar
  15. 16.
    J.E. Mark, in: Elastomers and Rubber Elasticity, (J.E. Mark and J. Lai, eds.), Am. Chem. Soc., Washington, D.C. (1982).CrossRefGoogle Scholar
  16. 16.
    J.P. Queslel and J.E. Mark, “Elasticity”, in: Encyclopedia of Polymer Science and Engineering, 2nd ed., Vol. 5, pp. 365–407, Wiley, New York (1986).Google Scholar
  17. 17.
    M.Y. Tang, L. Garrido and J.E. Mark, “The Effect of Crosslink Functionality on the Elastomeric Properties of Bimodal Networks”, Polym. Commun., 25, 347–350 (1984).Google Scholar
  18. 18.
    C.Y. Jiang, L. Garrido and J.E. Mark, “Dependence of Elastomeric Properties on Network Junction Functionality”, J. Polym. Sci., Polym. Phys. Ed., 22, 2281–2284 (1984).CrossRefGoogle Scholar
  19. 19.
    L. Garrido, J.E. Mark, S.J. Clarson and J.A. Semlyen, “Studies of Cyclic and Linear Poly(dimethylsiloxanes):17. Elastomeric Properties of Model PDMS Networks Containing Either Cyclics or Linear Chains as Diluents”, Polym. Commun., 26, 55–57 (1985).Google Scholar
  20. 20.
    P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York (1979).Google Scholar
  21. 21.
    M. Doi and S.F. Edwards, “Dynamics of Concentrated Polymer Systems. I, II and III”, J. Chem. Soc. Faraday Trans. 2, 74, 1789–1801, 1802–1817, 1818–1832 (1978).CrossRefGoogle Scholar
  22. 22.
    P.E. Rouse, “A Theory of Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers”, J. Chem. Phys., 21, 1272–1280 (1953).CrossRefGoogle Scholar
  23. 23.
    J. Klein, “Evidence for Reptation in an Entangled Polymer Melt”, Nature, 271, 143–145 (1978).CrossRefGoogle Scholar
  24. 24.
    G. Fleischer, “Self-diffusion in Melts of Polystyrene and Polyethylene Measured by Pulsed Field Gradient NMR”, Polym. Bull, 9, 152–158 (1983).CrossRefGoogle Scholar
  25. 25.
    I. Zupancic, G. Lahajnar, R. Blinc, D.H. Reneker and D.L. VanderHat, “NMR Self-diffusion Study of Polyethylene and Paraffin Melts”, J. Polym. Sci., Polym. Phys. Ed., 23, 387–404 (1985).CrossRefGoogle Scholar
  26. 26.
    R. Bachus and R. Kimmich, “Molecular Weight and Temperature Dependence of Self-diffusion Coefficients in Polyethylene and Polystyrene Melts Investigated Using Modified n.m.r. Field Gradient Technique”, Polymer, 24, 964–990 (1983).CrossRefGoogle Scholar
  27. 27.
    P.J. Mills, P.F. Green, C.J. PalmstrØm, J.W. Mayer and E.J. Kramer, “Polydispersity Effects on Diffusion in Polymers: Concentration Profiles of d-polystyrene Measured by Forward Recoil Spectrometry”, J. Polym. Sci., Polym. Phys. Ed., 24, 1–9 (1986).CrossRefGoogle Scholar
  28. 28.
    D.W. McCall, D.C. Douglass and E.W. Anderson, “Diffusion in Ethylene Polymers. IV”, J. Chem. Phys., 30, 771–773 (1959).CrossRefGoogle Scholar
  29. 29.
    E.D. von Meerwall, J. Grigsby, D. Tomich and R. van Antwerp, “Effect of Chain-end Free Volume on the Diffusion of Oligomers”, J. Polym. Sci., Polym. Phys. Ed., 20, 1037–1053 (1982).CrossRefGoogle Scholar
  30. 30.
    E. von Meerwall and K.R. Bruno, “Pulsed-gradient Spin-echo Diffusion Study of Polydisperse Paraffin Mixtures”, J. Magn. Reson., 62, 417–427 (1985).Google Scholar
  31. 31.
    E. von Meerwall and P. Palunas, “The Effects of Polydispersity, Entanglements and Crosslinks on Pulsed-gradient NMR Diffusion Experiments in Polymer Melts”, J. Polym. Sci., Polym. Phys. Ed., 25, 1439–1457 (1987).CrossRefGoogle Scholar
  32. 32.
    G. Fleischer, “The Chain Length Dependence of Self-diffusion in Melts of Polyethylene”, Colloid Polym. Sci., 265, 89–95 (1987).CrossRefGoogle Scholar
  33. 33.
    J. Klein, “The Onset of Entangled Behavior in Semidilute and Concentrated Polymer Solutions”, Macromolecules, 11, 852–858 (1978).CrossRefGoogle Scholar
  34. 34.
    J. Klein, “Effect of Matrix Molecular Weight on Diffusion of a Labeled Molecule in a Polymer Melt”, Macromolecules, 14, 460–461 (1981).CrossRefGoogle Scholar
  35. 35.
    J.D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Wiley, New York (1970).Google Scholar
  36. 36.
    F. Bueche, in: Physical Properties of Polymers, Interscience, New York (1962).Google Scholar
  37. 37.
    E.D. von Meerwall, “Interpreting Pulsed-gradient Spin-echo Diffusion Experiments in Polydisperse Specimens”, J. Mag. Reson., 50, 409–416 (1982).Google Scholar
  38. 38.
    D.A. Bernard and J. Noolandi, “Polydispersity Variation and the Polymer Seif-diffusion Exponent”, Macromolecules, 16, 548–555 (1983).CrossRefGoogle Scholar
  39. 39.
    P.T. Callaghan and D.N. Pinder, “A Pulsed Field Gradient NMR Study of Self-diffusion in a Polydisperse Polymer System: Dextran in Water”, Macromolecules, 16, 968–973 (1983).CrossRefGoogle Scholar
  40. 40.
    P.T. Callaghan and D.N. Pinder, “Influence of Polydispersity on Polymer Self-diffusion Measurements by Pulsed Field Gradient Nuclear Magnetic Resonance”, Macromolecules, 18, 373–379 (1985).CrossRefGoogle Scholar
  41. 41.
    G. Fleischer, D. Geschke, J. Kärger and W. Heink, “Peculiarities of Self-diffusion Studies on Polymer Systems by the NMR Pulsed Field Gradient Technique”, J. Magn. Reson., 65, 429–443 (1985).Google Scholar
  42. 42.
    H.Y. Carr and E.M. Purcell, “Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments”, Phys. Rev, Ser. 2, 94, 630–638 (1954).Google Scholar
  43. 43.
    E.O. Stejskal and J.E. Tanner, “Spin-diffusion Measurements Spin Echos in the Presence of a Time-dependent Field Gradient”, J. Chem. Phys., 42, 288–292 (1965).CrossRefGoogle Scholar
  44. 44.
    D.W. McCall, D.C. Douglass and E.W. Anderson, “Nuclear Magnetic Relaxation in Polymer Melts and Solutions”, J. Polym. Sci., 59, 301–315 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Leoneio Garrido
    • 1
  • Jerome L. Ackerman
    • 1
  • James E. Mark
    • 2
  1. 1.Dept. of Radiology, NMR facility Baker-2Massachusetts General Hospital BostonMassachusettsUSA
  2. 2.Dept. of Chemistry and the Polymer Research CenterUniversity of CincinnatiCincinnatiUSA

Personalised recommendations