Advertisement

Rapid Thermal Annealing - Theory and Practice

  • C. Hill
  • S. Jones
  • D. Boys
Part of the NATO ASI Series book series (NSSB, volume 207)

Abstract

Throughout the three decades since the beginnings of the integrated circuit industry in 1958, heat-treatment has been an essential part of the processing technology for annealing, oxidation, interfacial reaction, solid state diffusion and many other physical changes in the silicon and its overlayers. Despite this central role, heat-treatment has for much of this time been carried out in basically the same way, in contrast to the radical changes that have occurred in other areas, e.g. lithography, etching, epitaxy. The industry standard heat treatment is still to load a large batch of wafers, stacked vertically along a boat, into a resistively heated oven, and to heat the whole oven to temperature, controlling this by monitoring the oven temperature. The disadvantage of this technique is that the times to ramp up and down are necessarily long, both because of the large thermal masses involved, and because the indirect method of heating the wafer results in large thermal gradients and plastic deformation (slip) if rapid heating is attempted. This disadvantage has become significant in recent years because the reduced thermal processing required by modern smallgeometry processes cannot always be satisfactorily achieved by reducing temperature: and furnace times are already as short as is feasible.

Keywords

Oxide Thickness Black Body Rapid Thermal Processing Effective Emissivity Black Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.M.Fairfield and G.H.Schwuttke Solid State Electronics 11 1175 (1968).ADSCrossRefGoogle Scholar
  2. [2]
    Laser-Solid Interactions and Laser Processing — 1978 (S.D. Ferris, H.J. Leamy, J.M. Poate eds) American Inst.Phys.(1979)Google Scholar
  3. [3]
    Laser and Electron-Beam Processing of Materials (C.W. White and P.S. Peercy eds) Academic Press N.Y. (1980)Google Scholar
  4. [4.
    Laser & Electron-Beam Solid Interactions and Materials Processing (J.F. Gibbons, L.D. Hess, T.W. Sigmon eds). Mat.Res.Soc. Proc 1 North Holland (1981).Google Scholar
  5. [5]
    Laser and Electron-Beam Interactions with Solids (B.R.Appleton & G.K.Celler eds) Mat.Res.Soc. Proc 4 North Holland (1982).Google Scholar
  6. [6]
    Energy Beam — Solid Interactions and Transient Thermal Processing (J.C.C.Fan, N.M.Johnson eds) North Holland (1984).Google Scholar
  7. [7]
    Rapid Thermal Processing (T.O. Sedgwick, T.E.Seidel, B.Y.Tsaur) Mat.Res.Soc. Proc. 52 MRS. Pittsburgh (1986).Google Scholar
  8. [8]
    Rapid Thermal Processing of Electronic Materials (S.R.Wilson, R.A.Powell, D.E.Davies eds) Mat.Res.Soc. Proc.92 MRS. Pittsburgh (1987).Google Scholar
  9. [9]
    Rapid Thermal Processing of Electronic Materials and Devices Extended Abstracts 63–92 Electrochemical Society Meeting Atlanta May 15–20 (1988).Google Scholar
  10. [10]
    Y.Miyai, K.Yoneda, H.Oishi, H.Uetida, Morio Inone, J.Electrochem. Soc. 135 No.l 150 (1988).Google Scholar
  11. [11]
    C.Hill in ‘Laser Annealing of Semiconductors’ (J.Poate, J.W.Mayer eds) 479 Academic Press NY (1982)Google Scholar
  12. [12]
    T.Sato Japan J.Appl.Phys. 6(3) 339 (1967)ADSCrossRefGoogle Scholar
  13. [13]
    C.Hill unpublished dataGoogle Scholar
  14. [14]
    D.J.Godfrey, A.C.Hill and C.Hill J.Electrochem.Soc. 128 (8) 1798 (1981)CrossRefGoogle Scholar
  15. [15]
    M.Born and E.Wolf ‘Principles of Optics’ 6th edition Pergamon Press (1981)Google Scholar
  16. [16]
    T.S.Moss ‘Optical Properties of Semiconductors’ Butterworth, London (1980)Google Scholar
  17. [17]
    D.W.Pettibone, J.R.Suarez and A.Gat Rapid Thermal Processing (T.O. Sedgwick, T.E.Seidel, B.Y.Tsaur) Mat.Res.Soc. Proc. 52 MRS. Pittsburgh p.209 (1986)Google Scholar
  18. [18]
    R.E.Sheets Rapid Thermal Processing (T.O. Sedgwick, T.E.Seidel, B.Y.Tsaur) Mat.Res.Soc. Proc. 52 MRS. Pittsburgh  p.191 (1986)Google Scholar
  19. [19]
    P.G.Merli Optik 56(3) 205 (1980)Google Scholar
  20. [20]
    S.A.Cohen, T.O.Sedgwick and J.L.Speidell Energy Beam — Solid Interactions and Transient Thermal Processing (J.C.C.Fan, N.M.Johnson eds) North Holland  p.321 (1984)Google Scholar
  21. [21]
    J.L.Hoyt and J.F.Gibbons Ref.7 p.15 (1986)Google Scholar
  22. [22]
    J.Blake, J.C.Gelpey, J.F.Moquin, J.Schlueter, R.Capodilupo Rapid Thermal Processing of Electronic Materials (S.R.Wilson, R.A.Powell, D.E.Davies eds) Mat.Res.Soc. Proc.92 MRS. Pittsburgh  p. 265 (1987)Google Scholar
  23. [23]
    D.E.Aspnes, ‘Optical Functions of intrinsic Si’, in: ‘Properties of Silicon’, EMIS data review 4, INSPEC, The Institution of Electrical Engineers, London (1988).Google Scholar
  24. [24]
    H.R. Philipp, ‘Silicon Oxides: optical functions’, in: ‘Properties of Silicon’, EMIS data review 4, INSPEC, The Institution of Electrical Engineers, London (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. Hill
    • 1
  • S. Jones
    • 1
  • D. Boys
    • 1
  1. 1.Plessey Research Caswell LtdTowcester NorthantsEngland

Personalised recommendations