Skip to main content

The Biodistribution of Radiocopper-Labeled Compounds

  • Chapter
Book cover Copper Bioavailability and Metabolism

Abstract

Porphyrins form extremely stable chelates with Cu2+. Two copper radionuclides, 67Cu and 64Cu, have attractive nuclear decay properties for use in nuclear medicine applications. We have investigated the use of radiocopper-labeled porphyrins for localization in inflamed tissue and for attachment to antibodies for tumor imaging and therapy. We have examined the biodistribution of a 67Cu labeled porphyrin, [5,10,15,20-tetrakis(4-carboxyphenyl) porphinato [67Cu] copper (II)], 67CuTCPP. The 67CuTCPP was intravenously injected into the tail vein of Fischer F344 male rats. The kidneys, liver, and spleen localize the greatest amounts of 67CuTCPP. The elimination of 67CuTCPP from the body is described by a normal exponential decay curve with a biological half-life of 108 hours and an effective half-life of 32 hours. We have also examined the biodistribution of 5-(4-carboxyphenyl)-10,15,20-tris(4-sulfophenyl) porphinato [67Cu] copper (II) anti-Thy 1.2 antibody conjugates in normal and tumor-bearing male AKR/J mice. The liver, kidney, and tumor have the highest uptake of the 67Cu labeled antibody conjugate. In all 67Cu labeled compounds studied, the blood clearance was rapid and the bone concentration of the radiolabeled species was low.

To whom correspondences should be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Armitage, N. C., Perkins, A. C., Pimm, M. V., Wastie, M. L., Baldwin, R. W., Hardcastle, J. D., 1985, Imaging of primary and metastatic colorectal cancer using an 111In-labelled antitumour monoclonal antibody (791T/36), Nucl. Med. Commun., 6:623.

    Article  PubMed  CAS  Google Scholar 

  • Browne, E., Kairiki, J. M., Doebler, R. E.,1978, “Table of Isotopes, 7th Edition,” John Wiley, New York, pp. 197–198,211–212.

    Google Scholar 

  • Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72:248.

    Article  PubMed  CAS  Google Scholar 

  • Buchler, J. W., 1975, Static coordination chemistry of metalloporphyrins, in: “Porphyrins and Metalloporphyrins,” K. M. Smith, ed., Elsevier Scientific, New York, pp. 157–231.

    Google Scholar 

  • Clelland, C. O., Giles, D. D., Farley, T. D., Gee, Q. Wright, J. R., 1986, The intravenous distribution of a radiolabeled potentially useful cluster ion of copper and penicillamine, Physiol. Chem. Phys. Med., 18:31.

    Google Scholar 

  • Cole, D. C., Mercer-Smith, J. A., Norman, J. K., Bullington, K. P., Roberts, J. C., Lavallee, D. K., 1989, Copper-67 labeled porphyrin localization in inflamed tissues, in “Copper Nutrition and Bioavailability,” C. Kies, ed., Plenum Press, New York, in press.

    Google Scholar 

  • Cole, W. D., DeNardo, S. J., Meares, C. R., McCall, M. J., DeNardo, G. L., Epstein, A. L., O’Brien, H. A., Moi, M. K., 1987, Comparative serum stability of radiochelates for antibody radiopharmaceuticals, J. Nucl. Med., 28:83.

    PubMed  CAS  Google Scholar 

  • Dougherty, T. J., Lawrence, G., Kaufman, J. H., Boyle, D., Weishaupt, K. R., Goldfarb, A., 1979, Photoradiation in the treatment of recurrent breast carcinoma, J. Natl. Cancer Inst., 62:231.

    PubMed  CAS  Google Scholar 

  • Eckelman, W. C. Paik, C. H., 1989, Labeling antibodies with metals using bifunctional chelates, in: “Antibodies in Radiodiagnosis and Therapy,” M. R. Zalutsky, ed., CRC Press, Boca Raton, Florida, pp. 103–128.

    Google Scholar 

  • El-Far, M. A. Pimstone, N. R., 1986, Selective in vivo tumor localization of uroporphyrin isomer I in mouse mammary carcinoma: Superiority over other porphyrins in a comparative study, Cancer Res., 46:4390.

    PubMed  CAS  Google Scholar 

  • Fawwaz, R. A., 1978, Systematically administered compounds for lymphatic ablation, in: “Therapy in Nuclear Medicine,” R. P. Spencer, ed., Grune and Stratton, New York, pp. 193–204.

    Google Scholar 

  • Fawwaz, R. A., Frye, F., Laughman, W. D., 1974, Survival of skin homographs in dogs injected with 109Pd porphyrin, J. Nucl. Med., 15:991.

    Google Scholar 

  • Fawwaz, R. A., Hemphill, W., Winchell, H. S., 1971, Potential use of Pd-109 porphyrin complexes for selective lymphatic ablation, J. Nucl. Med., 12:231.

    PubMed  CAS  Google Scholar 

  • Fawwaz, R. A., Winchell, H. S., Frye, F., 1969, Localization of Co-58 and Zn-65 hematoporphyrin complexes in canine lymph nodes, J. Nucl. Med., 10:581.

    PubMed  CAS  Google Scholar 

  • Foster, N., Woo, D. V., Kaltovich, F., Emrich, J., Ljungquist, C, 1985, Delineation of a transplanted malignant melanoma with In-111-labeled porphyrin, J. Nucl. Med., 26:756.

    PubMed  CAS  Google Scholar 

  • Hambright, P., Fawwaz, R., Valk, P., McRae, J., Bearden, A. J., 1975, The distribution of various water soluble radioactive metalloporphyrins in tumour-bearing mice, Bioinorg. Chem., 5:87.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, M. A., Fawwaz, R. A., Oluwole, S., Todd, G., Nowygrod, R., Reemtsma, K., 1979, Selective lymphoid irradiation. I. An approach to transplantation, Surgery, 86:194.

    Google Scholar 

  • Hopf, F. R. Whitten, D. G., 1975, Photochemistry of porphyrins and metalloporphyrins, in: “Porphyrins and Metalloporphyrins,” K. M. Smith, ed., Elsevier Scientific, New York, pp. 667–700.

    Google Scholar 

  • Keenan, A. M., Harbert, J. C., Larson, S. M., 1985, Monoclonal antibodies in nuclear medicine, J. Nucl. Med., 26:531.

    PubMed  CAS  Google Scholar 

  • Kessel, D., 1984, Hematoporphyrin and HPD: Photophysics, photochemistry, and phototherapy, Photochem. Photobiol., 59:851.

    Article  Google Scholar 

  • Lavallee, D., White, A., Diaz, A., Battioni, J., Mansuy, D., 1986, Efficient metalloporphyrin synthesis under mild conditions using N-benzyl porphyrins, Tet. Lett., 27:3521.

    Article  CAS  Google Scholar 

  • Ledbetter, J. A., Rouse, R. V., Miclem, H. S., Herzenberg, L. A., 1980, T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens, J. Exp. Med., 52:280.

    Article  Google Scholar 

  • Maziere, B., Stulzaft, O., Verret, M. M., Comar, D., Syrota, A., 1983, [55Co]- and [64Cu]-DTPA: New radiopharmaceuticals for quantitative tomocisternography, Int. J. Appl. Radiat. Isot., 34:595.

    Article  PubMed  CAS  Google Scholar 

  • Mercer-Smith, J. A., Roberts, J. C., Figard, S. D., Lavallee, D. K., 1988, The development of copper-67 labeled porphyrin-antibody conjugates, in: “Antibody-Mediated Delivery Systems,” J. D. Rodwell, ed., Marcel Dekker, New York, pp. 317–352.

    Google Scholar 

  • Nunn, A. D., 1979, The kinetics of incorporation of In- 111 into meso-tetraphenylporphine, J. Radioanal. Chem., 53:291.

    Article  CAS  Google Scholar 

  • Parr, G. R. Pasternak, R. F., 1977, The interaction of some water-soluble porphyrins and metalloporphyrins with human serum albumin, Bioinorg. Chem., 7:277.

    Article  PubMed  CAS  Google Scholar 

  • Peters, T, 1977, Serum albumin: Recent progress in the understanding of its structure and biosynthesis, Clin. Chem., 23:5.

    PubMed  CAS  Google Scholar 

  • Prout Jr., G. R., Lin, C-W., Benson Jr., R., Nseyo, U. O., Daly, J. J., Griffin, P. P., Kinsey, J., Tian, M., Lao, Y., Mian, Y., Chen, X., Ren, E., Qiao, S., 1987, Photodynamic therapy with hematoporphyrin derivative in the treatment of superficial transitional-cell carcinoma of the bladder, N. Engl. J. Med., 377:1251.

    Article  Google Scholar 

  • Raman, S., Pinajian, J. J., 1969, Decay of 67Cu, Nucl. Phys., A131:393.

    Google Scholar 

  • Reftmann, J. P., Morliere, P., Goldstein, S. Santus, R., Dubertret, L. Lagrange, D., 1984, Interaction of human serum low density lipoprotein with porphyrins: a spectroscopic and photochemical study, Photochem. Photobiol., 40:121.

    Google Scholar 

  • Roberts, J. C., Figard, S. D., Mercer-Smith, J. A., Svitra, Z. V., Anderson, W. L., Lavallee, D. K., 1987, Preparation and characterization of copper-67 porphyrin-antibody conjugates, J. Immunol. Meth., 105:153.

    Article  CAS  Google Scholar 

  • Roberts, J. C., Newmyer, S. L., Mercer-Smith, J. A., Schreyer, S. A., Lavallee, D. K., 1989, Labeling antibodies with copper radionuclides using N-4-nitrobenzyl-5-(4-carboxyphenyl)-10,15,20-tris(4-sulfophenyl) porphine, Int. J. Appl. Radiat. Isot., in press.

    Google Scholar 

  • Robinson Jr., G. D., Alavi, A., Vaum, R., Staum, M., 1986, Imaging of lymph node uptake after intravenous administration of indium-111 metalloporphyrins, J. Nucl. Med., 27:239.

    PubMed  CAS  Google Scholar 

  • Ruben, S. Kamen, M. D., Allen, M. B., Nahinsky, P., 1942, Some exchange experiments with radioactive tracers, J. Am. Chem. Soc., 64:2291.

    Google Scholar 

  • Sands, H. Gallagher, B. ML, 1989, Physiological, pharmacological, and immunological aspects of antibody targeting, in: “Antibodies in Radiodiagnosis and Therapy,” M. R. Zalutsky, ed., CRC Press, Boca Raton, Florida, pp. 129–151.

    Google Scholar 

  • Taylor Jr., A., Milton, W., Eyre, H., Christian, P., Wu, F., Hagan, P., Alazraki, N. Datz, F. L., Unger, M., 1988, Radioimmunodetection of human melanoma with indium-111-labeled monoclonal antibody, J. Nucl. Med., 29:329.

    PubMed  Google Scholar 

  • Vaum, R., Heindel, N. D„ Burns, H. D., Emrich, J., Foster, N., 1982, Synthesis and evaluation of an In-111-labeled porphyrin for lymph node imaging, J. Pharm. Sci., 71:1223.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T S. T., Fawwaz, R. A., Tomashefsky, P., 1981, Metalloporphyrin derivatives: Structure-localization properties, in: “Radiopharmaceuticals: Structure-Activity Relationships,” R. P. Spencer, ed., Grune and Stratton, New York, pp. 225–249.

    Google Scholar 

  • Wessels, B. W., Rogus, R. D., 1984, Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies, Med. Phys., 11:638.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, K., Carrasquillo, J. A., Chang, A. E., Colcher, D., Roselli, M., Sugarbaker, P., Sindelar, W., Reynolds, J. C., Perentesis, P., Gansow, O. A., Francis, B., Adams, R., Finn, R., Schlom, F., Larson, S. M., 1989, Differences in biodistribution of indium-111- and iodine-131-labeled B72.3 monoclonal antibodies in patients with colorectal cancer, J. Nucl. Med., 30:320.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Mercer-Smith, J.A., Cole, D.A., Roberts, J.C., Lewis, D., Behr, M.J., Lavallee, D.K. (1989). The Biodistribution of Radiocopper-Labeled Compounds. In: Kies, C. (eds) Copper Bioavailability and Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0537-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0537-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7855-9

  • Online ISBN: 978-1-4613-0537-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics