Skip to main content

Parallel Spectral Element Methods For The Incompressible Navier-Stokes Equations

  • Chapter
Solution of Superlarge Problems in Computational Mechanics

Abstract

We present a parallel spectral element method for solution of the unsteady incompressible Navier-Stokes equations in general three-dimensional geometries. The approach combines high-order spatial discretizations with iterative solution techniques in a way which exploits with high efficiency currently available medium-grained distributed-memory parallel computers. Emphasis is placed on the development of algorithm constructs which allow for solution of physically relevant problems; we specifically address the problem of parallel solution in domains of general topology. The success of the procedure is demonstrated by several examples of moderate Reynolds number Navier-Stokes calculations on the Intel vector hypercube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.F. Chan, Y. Saad, M.H. Schultz, inHypercube Multiprocessors 1986( M.T. Heath, ed), SIAM, Philadelphia, 1986.

    Google Scholar 

  2. O.A. McBryan, E.F. van de Velde, inSelected Papers from the Second Conference on Parallel Processing for Scientific Computing( C.W. Gear, R.G. Voigt, eds.), SIAM, Philadelphia, 1987.

    Google Scholar 

  3. T.F. Chan, D.C.Resasco, inSelected Papers from the Second Conference on Parallel Processing for Scientific Computing( C.W. Gear, R.G. Voigt, eds.), SIAM, Philadelphia, 1987.

    Google Scholar 

  4. R. Glowinski, M.F. WheelerProceedings of the First International Conference on Domain Decomposition Methods for Partial Differential Equations, Paris(R. Glowinski, G. Golub, G. Meurant, J. Periaux, eds.), pp. 144–172, SIAM, Philadelphia, 1987.

    Google Scholar 

  5. O.B. Widlund, inProceedings of the First International Conference on Domain Decomposition Methods for Partial Differential Equations, Paris(R. Glowinski, G. Golub, G. Meurant, J. Periaux, eds.),pp. 113–127, SIAM, Philadelphia, 1987.

    Google Scholar 

  6. D.E. Keyes, W.D. Gropp, inProceedings of the Second International Conference on Domain Decomposition Methods for Partial Differential Equations, Los AngelesSIAM, Philadelphia, 1988

    Google Scholar 

  7. L. Adams, R.G. Voigt, inLarge Scale Scientific Computation(S. Parter, ed.), pp 301–321, Academic Press, Orlando, Florida, 1984.

    Google Scholar 

  8. W.D. Gropp, D.E. Keyes, SIAM J. of Sci. and Stat. Comput. 9 (1988) 312–326.

    Google Scholar 

  9. Y. Saad, M.H. Schultz,Topological Properties of Hypercubes, Research Report YALEU/DCS/RR-389, Yale University, New Haven, 1985.

    Google Scholar 

  10. H.X. Lin, H.J. Sips, in Proc. 1986 Int. Conf. on Parallel Processing, 503– 510,1986.

    Google Scholar 

  11. A.T. Patera, A spectral element method for fluid dynamics; Laminar flow in a channel expansion, J. Comput. Phys., 54, 1984, p. 468.

    Article  Google Scholar 

  12. Y. Maday, A.T. Patera, Spectral element methods for the Navier-Stokes equations, in State of the Art Surveys in Computational Mechanics (Edited by A.K. Noor), ASME, New York, to appear.

    Google Scholar 

  13. S.A. Orszag, Spectral Methods for Problems in Complex Geometries, J. Comput Phys., 37, 1980, p. 70.

    Article  Google Scholar 

  14. A.H. Stroud, D. Secrest, Gaussian Quadrature Formulas, Prentice Hall, 1966.

    Google Scholar 

  15. C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, 1987.

    Google Scholar 

  16. G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press, 1983.

    Google Scholar 

  17. E.M. Rønquist, A.T. Patera, Spectral element multigrid. I. Formulation and numerical results,J. Sci. Comput, 2, 4, 1987, p. 389.

    Article  Google Scholar 

  18. Y. Maday, Muñoz, Spectral Element Multigrid. II. Theoretical Justification, J. Sci. Comput, to appear.

    Google Scholar 

  19. M.T. Heath, The Hypercube: A Tutorial Overview, in Hypercube Multiprocessors 1986, (M.T. Heath, ed.), SIAM, Philadelphia, 1986.

    Google Scholar 

  20. P.F. Fischer, A.T. Patera, Parallel Spectral Element Solution of the Stokes Problem, J. Comput Phys., submitted.

    Google Scholar 

  21. B. Nour-Omid, A. Raefsky, G. Lyzenga, Solving Finite Element Equations on Concurrent Computers, in Parallel Computations and Their Impact on Mechanics,(A.K. Noor, Ed.), ASME, N.Y., 1987.

    Google Scholar 

  22. R.F. Lucas, Solving Planar Systems of Equations on Distributed-Memory Multiprocessors Ph.D. Thesis., Dept. of Electrical Engineering, Stanford University, 1987.

    Google Scholar 

  23. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker (1988). Solving Problems on Concurrent Processors. Volume 1: General Techniques and Regular Problems. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  24. J.L. Gustafson, G.R. Montry, R.E. Benner, Development of Parallel Methods for a 1024-Processor Hypercube, SIAM J. on Sci. and Stat Comput, 9, 4, July 1988, pp. 609 – 638.

    Article  Google Scholar 

  25. W.A. Gross, “Fluid Film Lubrication”, John Wiley & Sons, Inc., New York (1980).

    Google Scholar 

  26. E.M. Rønquist, Optimal Spectral Element Methods for the Unsteady Three-dimensional Incompressible Navier-Stokes Equationsi Ph.D. Thesis, Massachusetts Institute of Technology, 1988.

    Google Scholar 

  27. H. Honji, A. Taneda, Unsteady Flow Past a Circular Cylinder, J. Phys. Soc. Japan, 27, 6, 1969, p. 1668.

    Article  Google Scholar 

  28. G.E. Karniadakis, E.T. Bullister, A.T. Patera, A Spectral Element Method for Solution of the Two- and Three-Dimensional Time-Dependent Incompressible Navier-Stokes Equations, in:Finite Element Mehtods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway 1985., Bergan, Bathe, Wunderlich, eds., Springer, Berlin Heidelberg, 1986.

    Google Scholar 

  29. M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford, California, 1982, p. 36.

    Google Scholar 

  30. C.J. Baker, The laminar horseshoe vortex, J. Fluid Mech., 95, 1979, p. 347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Fischer, P.F., Patera, A.T. (1989). Parallel Spectral Element Methods For The Incompressible Navier-Stokes Equations. In: Kane, J.H., Carlson, A.D., Cox, D.L. (eds) Solution of Superlarge Problems in Computational Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0535-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0535-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7854-2

  • Online ISBN: 978-1-4613-0535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics