Skip to main content

Inhaled CO2 as a Constant Fraction in Inspired Air and as Early-Inspired Pulses

  • Chapter
Respiratory Control

Abstract

When CO2 is inhaled as a constant fraction (CF) in inspired air, the CO2 load is linearly related to ventilation, but when CO2 is added to the inspired airstream at a constant flow, the CO2 load is fixed and independent of ventilation,1. In the latter case, both the deadspace of the inspiratory limb of the equipment and ventilation have a significant effect on the timecourse of CO2 within each breath — i.e. a small deadspace causes a large amplitude early-inspired pulse (EIP) of CO2 in each inspiration because of CO2 build up during expiration, whilst a large deadspace distributes CO2 more evenly throughout each inspiration. We compared the normoxic ventilatory response to step changes in the fraction of CO2 in the inspired air with step changes in the flow of CO2 delivered into the inspired air when a small deadspace is used. The results of each experiment are discussed in terms of their effect on the time-course of alveolar CO2 oscillations which occur during a respiratory cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. O. Fenn and A. B. Craig, Effect of CO2 on respiration using a new method of administering CO2. J.Appl. Physiol. 18(5): 1023–1024, (1963).

    PubMed  CAS  Google Scholar 

  2. M. J. Mussell, Y. Nakazono, and Y. Miyamoto. Utilising a piston to develop a system for studying the regulation of breathing. Med.& Biol. Eng. & Comput. (Manuscript submitted July 1988).

    Google Scholar 

  3. J. W. Bellville, B.J. Whipp, R.D. Kaufman, G.D. Swanson, K.A. Aqleh, and D.M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body resected subjects. J.Appl. Physiol. 46: 843–853, (1979).

    PubMed  CAS  Google Scholar 

  4. G. D. Swanson, and J.W. Bellville. Step changes in end-tidal CO2: methods and implications. J. Appl. Physiol., 39(3): 377–385, (1975).

    PubMed  CAS  Google Scholar 

  5. W. J. Reynolds, H.T. Milhorn Jr, and G.H. Holloman Jr. Transient ventilatory response to graded hypercapnia in man. J.Appl. Physiol. 33: 47–54, (1972).

    PubMed  CAS  Google Scholar 

  6. W. S. Yamamoto, Mathematical analysis of the time course of alveolar CO2. J.Appl. Physiol. 15(2): 215–219, (1960).

    PubMed  CAS  Google Scholar 

  7. D. M. Band, C.B. Wolff, J. Ward, G.M. Cochrane, and J. Prior. Respiratory oscillations in arterial carbon dioxide as a control signal in exercise. Nature, London, 283: 84–85, (1980).

    Article  CAS  Google Scholar 

  8. B. A. Cross, A. Davey, A. Guz, P.G. Katona, M. McLean, K. Murphy, S.J.G. Semple, and R. Stidwell. The pH oscillations in arterial blood during exercise: a potential signal for the ventilatory response in the dog. J.Physiol. London 329:57–73, (1982).

    PubMed  CAS  Google Scholar 

  9. D. J. C. Cunningham, M.G. Howson, and S.B. Pearson. The respiratory effects in man of altering the time profile of alveolar carbon dioxide and oxygen within each respiratory cycle. J.Physiol. London 234: 1–28, (1973).

    PubMed  CAS  Google Scholar 

  10. E. F. Metias, D.J.C. Cunningham, M.G. Howson, E.S. Petersen, and C.B. Wolfe. Reflex effects on human breathing of breath by breath changes of the time profile of alveolar-PCO2 during steady state hypoxia. Pflugers Arch, 389(3): 243–250, (1981).

    Article  PubMed  CAS  Google Scholar 

  11. K. B. Saunders, Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J.Theo.Biol. 84:163–179, (1980).

    Article  CAS  Google Scholar 

  12. H. Yokota, and F. Kreuzer. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pfluegers Arch. 340: 291–306, (1973).

    Article  CAS  Google Scholar 

  13. P. C. G. Nye, and J. Marsh. Ventilation and carotid chemoreceptor discharge during venous CO2 loading via the gut. Respirat. Physiol. 50: 335–350, (1982).

    Article  CAS  Google Scholar 

  14. D. M. Band, M. McClelland, D.L. Phillips, K.B. Saunders, and C.B. Wolff. Sensitivity of the carotid body to within-breath changes in arterial PCO2. J.Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 768–777, (1978).

    CAS  Google Scholar 

  15. A. Plaas-Link, A. Luttmann, and K. Muckenhoff. The influence of the slope of arterial PCO2 signals on the response of respiration. Proc. Int. Union physiol. Sci. 14. 641, (1980).

    Google Scholar 

  16. G. C. Coulter, M.D. Fischer, P.A. Robbins, and D.C. Wier. The relation between the duration of respiratory cycles and the lung-to-carotid circulation time in exercise (Abstract). J.Physiol. London 307:44P–45P, (1980).

    Google Scholar 

  17. A. M. S. Black and R.W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13:221–237, (1971).

    Article  PubMed  CAS  Google Scholar 

  18. E. A. Phillipson, G. Bowes, E.R. Townsend, J. Duffin, and J.D. Cooper. Role of metabolic CO2 production in the ventilatory response to steady-state exercise. J.Clin. Invest. 68: 768–774, (1981).

    Article  PubMed  CAS  Google Scholar 

  19. P. A. Robbins, and G.D. Swanson. Irregularities in breathing may encode information for respiratory control. Biomed. Meas. Infor. Contr. 1(2):59–63, (1986).

    Google Scholar 

  20. R. C. Goode, E.B. Brown Jr, M.G. Howson, and D.J.C. Cunningham. Respiratory effects of breathing down a tube. Respir. Physiol. 6:343–359, (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Mussell, M.J., Miyamoto, Y., Nakazono, Y. (1989). Inhaled CO2 as a Constant Fraction in Inspired Air and as Early-Inspired Pulses. In: Swanson, G.D., Grodins, F.S., Hughson, R.L. (eds) Respiratory Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0529-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0529-3_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7851-1

  • Online ISBN: 978-1-4613-0529-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics