Skip to main content

A General-Purpose Model for Investigating Dynamic Cardiopulmonary Responses During Exercise

  • Chapter
Respiratory Control

Abstract

Among the essential features of a heuristic physiological model are that it summarizes the available knowledge regarding a particular system and allows investigation of the consequent implications of the chosen model structure on a range of physiological responses. Our approach here was to pursue the latter feature, as it is evident that physiological inferences are often drawn in the literature without actual determination of whether the inferred behavior is, in fact, achievable with the given model. Hence, our purpose was to choose an explicit model that describes certain observed features of the body’s gas-exchange control system, and to determine the necessary consequences imposed by its structure on the observable behavior, under specified stimuli of physiological interest. We therefore required that: (a) the explicit model be sufficiently general to allow such determination without restricting it to espouse solely any particular control-system hypothesis, and (b) it allow progressive incorporation of particular observed behavior, thus developing in complexity (and completeness) in a “building-block” fashion. We found that surprising consequences often attended the simplest of stimulus profiles when constrained by the chosen model structure. But although intuition can be significantly misleading, it can be appropriately redirected by observing calculated variables when the (assumed) model is challenged over a suitable range of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Lamarra, S.A. Ward, and B.J. Whipp, Modelling system dynamic influences on blood-gas regulation in incremental exercise, J. Appl. Physiol. In Press (1989).

    Google Scholar 

  2. D. Linnarsson, Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise, Acta Physiol. Scand. (suppl.) 415:1 (1974).

    CAS  Google Scholar 

  3. R.L. Hughson and M. Morrissey, Delayed kinetics of respiratory gas exchange in the transition from prior exercise, J. Appl. Physiol. 52:921 (1982).

    PubMed  CAS  Google Scholar 

  4. Y. Miyamoto, T. Hiura, T. Tamura, T. Nakamura, J. Higuchi, and T. Mikami, Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load, J. Appl. Physiol. 52:1198 (1982).

    PubMed  CAS  Google Scholar 

  5. B.J. Whipp, S. A. Ward, N. Lamarra, J.A. Davis, and K. Wasserman, Parameters of ventilatory and gas exchange dynamics during exercise, J. Appl. Physiol. 52:1506 (1982).

    PubMed  CAS  Google Scholar 

  6. B.J. Whipp, Ventilatory control during exercise in humans, Ann. Rev. Physiol. 45:393 (1983).

    Article  CAS  Google Scholar 

  7. B.J. Whipp and S.A. Ward, Ventilatory control dynamics during muscular exercise in man, Internat. J. Sports Med. 1:146 (1980).

    Article  Google Scholar 

  8. N. Lamarra, B.J. Whipp, S.A. Ward, D.J. Huntsman, and K. Wasserman, Effect of inter-breath fluctuations on characterizing exercise gas-exchange kinetics, J. Appl. Physiol. 62:2003 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. K. Wasserman, B.J. Whipp, R. Casaburi, W.L. Beaver, and H.V. Brown, CO2 flow to the lungs and ventilatory control, in: “Muscular Exercise and the Lung,” J.A. Dempsey, and C.E. Reed, Univ. Wisconsin Press, Madison (1977).

    Google Scholar 

  10. F.A. Oldenburg, D. McCormack, J. Morse, and N. Jones, A comparison of exercise responses in stairclimbing and cycling, J. Appl. Physiol. 46:510 (1982).

    Google Scholar 

  11. I.H. Young and A. Woolcock, Changes in arterial blood gas tensions during unsteady-state exercise, J. Appl. Physiol. 44:93 (1978).

    PubMed  CAS  Google Scholar 

  12. B.J. Whipp, K. Wasserman, R. Casaburi, C. Juratsch, M.L. Weissman, and R. W. Stremel, Ventilatory control characteristics of conditions resulting in isocapnic hyperpnea, In: “Control of Respiration During Sleep and Anesthesia,” R. Fitzgerald, H. Gautier, and S. Lahiri. eds., Plenum, New York (1978).

    Google Scholar 

  13. K. Wasserman, B.J. Whipp, S.N. Koyal, and W.L. Beaver, Anaerobic threshold and respiratory gas exchange during exercise, J. Appl. Physiol. 35:236 (1973).

    PubMed  CAS  Google Scholar 

  14. B.J. Whipp, J.A. Davis, F. Torres, and K. Wasserman, A test to determine the parameters of aerobic function during exercise, J. Appl. Physiol. 50:217 (1981).

    PubMed  CAS  Google Scholar 

  15. J.A. Davis, P. Vodak, J.H. Wilmore, J. Vodak, and P. Kurtz, Anaerobic threshold and maximal aerobic power for three modes of exercise. J. Appl. Physiol. 41:544 (1976).

    PubMed  CAS  Google Scholar 

  16. T. Yoshida, A. Nagata, M. Muro, N. Tekeuchi, and Y. Suda, The validity of anaerobic threshold determination by a Douglas bag method compared with arterial blood lactate concentration, Europ. J. Appl. Physiol. 46:423 (1981).

    Article  CAS  Google Scholar 

  17. C.M. Donovan, and G.A. Brooks, Endurance training affects lactate clearance, not lactate production, Am. J. Physiol. 244:E83 (1983).

    PubMed  CAS  Google Scholar 

  18. M.P. Yeh, R.M. Gardner, T.D. Adams, F.G. Yanowitz, and R.O. Crapo, “Anaerobic threshold”: problems of determination and validation, J. Appl. Physiol. 55:1178 (1983).

    PubMed  CAS  Google Scholar 

  19. B.J. Whipp, N. Lamarra, and S.A. Ward, Required characteristics of pulmonary gas exchange dynamics for non-invasive determination of the anaerobic threshold, in.: “Concepts and Formalizations in the Control of Breathing”, G. Benchetrit, P. Baconnier, and J. Demongeot, eds., Univ. Manchester Press, Manchester (1987).

    Google Scholar 

  20. E. Asmussen, Muscular exercise, in: “Handbook of Physiology, Respiration, vol. 2,” W.O. Fenn and K. Rahn, eds., Amer. Physiol. Soc., Washington D.C. (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Lamarra, N., Ward, S.A., Whipp, B.J. (1989). A General-Purpose Model for Investigating Dynamic Cardiopulmonary Responses During Exercise. In: Swanson, G.D., Grodins, F.S., Hughson, R.L. (eds) Respiratory Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0529-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0529-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7851-1

  • Online ISBN: 978-1-4613-0529-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics