EDX and EELS Studies of Segregation in STEM

  • J. M. Titchmarsh
  • I. A. Vatter
Part of the NATO ASI Series book series (NSSB, volume 203)


Segregation in materials can be broadly divided into two types; equilibrium (ES) and non-equilibrium (NES). In the former1 the segregating species is assumed to have reached a steady-state equilibrium at a particular temperature such that the rate of capture at a sink exactly balances the rate of evaporation from the sink by thermal excitation. Subsequent rapid cooling to room temperature does not significantly alter the segregation profile. A simple concentration step change can be assumed to occur at the matrix-sink interface, with no significant concentration gradients present in the adjacent matrix. With NES, the concentration profile at the boundary is determined by the capture of solute atoms during quenching from an elevated temperature2 and so solute concentration gradients occur in the matrix adjacent to the boundary. The extent of the profiles is determined by the diffusion rates of the migrating species, and these can also be on the scale of inter-planar spacings. Much wider depletion and segregation profiles can also be produced by precipitation reactions at grain boundaries during high temperature anneals. Although point defects and linear defects can trap solute atoms, in this paper we shall consider sinks to be two-dimensional, i.e. grain boundaries, precipitate/matrix interfaces.


Ferritic Steel Foil Thickness Probe Size Boundary Segregation Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.McLean, “Grain Boundaries in Metals”, O.U.P., London, (1957).Google Scholar
  2. 2.
    T.M.Williams, A.M.Stoneham and D.R.Harries, The segregation of boron to grain boundaries in solution treated type 316 austenitic stainless steel, Met. Sci. 10:14 (1976).CrossRefGoogle Scholar
  3. 3.
    H.L.Marcus and P.W.Palmberg, Auger fracture surface analysis of a temper embrittled 3340 steel, Trans. Met. Soc. AIME 245:1664 (1969).Google Scholar
  4. 4.
    E.C.Bain, R.H.Aborn and J.J.B.Rutherford, The nature and prevention of intergranular corrosion in austenitic stainless steel, Trans. ASM 21:481 (1933).Google Scholar
  5. 5.
    J.K.Lai, A set of master curves for the creep ductility of type 316 stainless steel, J. Nucl. Materials 82:123 (1979).CrossRefGoogle Scholar
  6. 6.
    M.J.Bennett, J.A.Desport, M.R.Houlton, P.A.Labun and J.M.Titchmarsh, Inhibition of scale growth on 20Cr-25Ni-Nb stabilised stainless steel by yttrium ion implantation revealed by analytical electron microscopy, Mater. Sci.Tech. 4:1107 (1988).Google Scholar
  7. 7.
    D.B.Williams, “Practical Analytical Electron Microscopy in Materials Science”, Philips Electronic Instruments Inc., Electron Optics Publishing Group, Mahwah, New Jersey, (1984).Google Scholar
  8. 8.
    R.F.Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, Plenum Press, New York, (1986).Google Scholar
  9. 9.
    P.Doig and P.E.J.Flewitt, Measurement of solute profiles across inclined grain boundaries using STEM-EDS microanalysis, in: “EMAG’87-Analytical Electron Microscopy”G.W.Lorimer, ed., Institute of Metals, London, (1988).Google Scholar
  10. 10.
    J.C.H.Spence and J Tafto, Alchemi: a new technique for locating atoms in small crystals, J.Microscopy 130(11):147 (1983).CrossRefGoogle Scholar
  11. 11.
    P.Petroff, Transmission electron microscopy of interfaces in III-V compound semiconductors, J. Vac. Sci. Technol. 14:973 (1977).CrossRefGoogle Scholar
  12. 12.
    J.F.Bullock, STEM analysis of nanometre-scale inhomogeneities in semiconductors, D.Phil. Thesis, University of Oxford, (1988)Google Scholar
  13. 13.
    C.R.M.Grosvenor, P.E.Batson, D.A.Smith and C.Wong, As segregation to grain boundaries in Si, Phil. Mag. A 50:409 (1984).Google Scholar
  14. 14.
    S.H.Vale and P.J.Statham, STEM image stabilisation for high resolution microanalysis, in: “Electron Microscopy 1986”, proc. XI Int. Congress on Electron Microscopy, T.Imura, S.Maruse and T.Susuki, eds., Japanese Society of Electron Microscopy, 573 (1986).Google Scholar
  15. 15.
    O.L.Krivanek, C.C.Ahn and R.B.Keeney, Parallel detection electron spectrometer using quadrupole lenses, Ultramicroscopy 22:103 (1987).CrossRefGoogle Scholar
  16. 16.
    H.Shuman, Parallel recording of electron energy loss spectra, Ultramicroscopy 6:163 (1981)PubMedGoogle Scholar
  17. 17.
    D.Cherns, The surface structure of (111) gold films sputtered in the high voltage electron microscope: A theoretical model, Phil. Mag. 36:1429 (1977).CrossRefGoogle Scholar
  18. 18.
    J.R.Michael and D.B.Williams, An analytical electron microscope study of the equilibrium segregation of bismuth in copper, Met. Trans. A 15:99 (1984).Google Scholar
  19. 19.
    P.Doig and P.E.J.Flewitt, The detection of monolayer grain boundary segregation in steels using STEM-EDS x-ray microanalysis, Met. Trans. A 13:1397 (1982).Google Scholar
  20. 20.
    C.Colliex and C.Mory, Quantitative aspects of scanning transmission electron microscopy, in: “Proc. of 25th SUSSP”, J.N.Chapman and A.J.Craven, eds., Edinburgh University Press 25:149 (1983).Google Scholar
  21. 21.
    C.Mory, Etude theorique et experimentale de la formation de l’image en microscopie electronique a balayage par transmission, Ph.D. Thesis, Universite de Paris-Sud, Centre D’Orsay, (1985).Google Scholar
  22. 22.
    E.Munro, Calculation of the combined effects of diffraction, spherical aberration, chromatic aberration and finite source size in the SEM, Proc. VIIIth ICXOM, Boston, R Ogilvie and D.Wittry, eds., NBS Washington D.C., paper no. 19 (1977).Google Scholar
  23. 23.
    J.M.Titchmarsh, Materials analysis by STEM-EDX at high spatial resolution, in: “Microbeam Analysis 1988”, D.E.Newbury, ed., San Francisco Press Inc., San Francisco, 65 (1988).Google Scholar
  24. 24.
    S.J.Pennycook and L.A.Boatner, Structural and chemical imaging of high Tc superconductors by high resolution STEM, Proc. of Symp. on High Resolution Microscopy of Materials at 1988 Fall Meeting of RMS, Boston, W.Krakow, F.A.Ponce and D.J.Smith, eds., MRS Publications, (1989), in press.Google Scholar
  25. 25.
    L.Marks, Direct observations of diffractive probe spreading, Ultramicroscopy 16:261 (1985).CrossRefGoogle Scholar
  26. 26.
    P.Doig and P.E.J.Flewitt, The role of specimen and instrumental parameters in STEM-EDS x-ray microanalysis of thin foils, J. Microscopy 130:377 (1983).CrossRefGoogle Scholar
  27. 27.
    A.J.Garrett-Reed, Some considerations of the ultimate spatial resolution acheivable in scanning transmission electron microscopy, in: “SEM/1985/I”, O.Johari, ed.SEM Inc.AMF O’Hare, Chicago, 21 (1985).Google Scholar
  28. 28.
    T.F.Malis, S.C.Cheng and R.F.Egerton, The EELS log-ratio technique for thickness measurements in the TEM, J. Elecron Microscopy Techniques 8:193 (1988).CrossRefGoogle Scholar
  29. 29.
    D.E.Newbury and R.L.Myklebust, A Monte Carto electron trajectory simulation for analytical electron microscopy, in: “AEM 1981”, R.H.Geiss, ed., San Francisco Press Inc., 91 (1981).Google Scholar
  30. 30.
    I.A.Vatter and J.M.Titchmarsh, Measurement of grain boundary segregation by STEM-EDX, Ultramicroscopy (1989), in press.Google Scholar
  31. 31.
    J.M.Titchmarsh, Metallurgical applications of analytical electron microscopy with high spatial resolution, in: “Proc. XIth ICXOM”, J.D.Brown and R.H.Packwood, eds., ICXOM-11, London, Ontario 337 (1987).Google Scholar
  32. 32.
    P.Trebbia, Unbiassed method for signal estimation in electron energy loss spectroscopy, concentration measurements and detection limits in quantitative microanalysis: methods and programs, Ultramicroscopy 24:399 (1988).CrossRefGoogle Scholar
  33. 33.
    D.C.Joy and D.M.Maher, Sensitivity limits for thin specimen x-ray analysis, in: “SEM/1977/I”, O. Johari, ed, SEM Inc., AMF O’Hare, Chicago, 325 (1977).Google Scholar
  34. 34.
    D.C.Joy and D.M.Maher, EELS: detectable limits for elemental analysis, Ultramicroscopy 5:333 (1980).CrossRefGoogle Scholar
  35. 35.
    N.R.Draper and H.Smith, “Applied Regression Analysis”, 2nd Edition, Wiley, New York (1981).Google Scholar
  36. 36.
    J.N.Chapman, C.C.Gray, B.W.Robertson and W.A.P.Nicholson, X-ray production in thin foils by electrons with energies between 40 and 100 keV, X-ray Spectrom. 12:153 (1983).CrossRefGoogle Scholar
  37. 37.
    G.Cliff and G.W.Lorimer, The quantitative analysis of thin specimens, J. Microscopy 103:203 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. M. Titchmarsh
    • 1
  • I. A. Vatter
    • 1
  1. 1.Fracture Studies GroupHarwell LaboratoryDidcot, OxonUK

Personalised recommendations