Advertisement

Determination of Composition and Ionicity by Critical Voltage and Other Electron Diffraction Methods

  • J. Gjønnes
  • H. Matsuhata
  • K. Gjønnes
Part of the NATO ASI Series book series (NSSB, volume 203)

Abstract

Several methods for determination of structure factors/structure parameters by convergent beam electron diffraction (CBED) can be described in terms of the gap, (ϒji)min, at the dispersion surface. Most accurate may be those based upon measurement of the condition for zero gap, revaled by zero contrast of a Kikuchi or Kossel line. By measurement in non-systematic cases, measured either as a critical voltage or as a diffraction condition, the scope of the method is increased. Application of non-systematical critical voltage measurement to various types of semiconductor structures: ZnS, diamond, rutile type is shown.

Keywords

Acta Cryst Bloch Wave Critical Voltage Dispersion Surface Convergent bealJl Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackman, M. (1939) Proc. Roy. Soc. A29, 68–82.Google Scholar
  2. Buxton, G.F. (1976) Proc. Roy. Soc. A 300, 335–361.Google Scholar
  3. Buxton, G.F., Loveluck, J.E. and Steeds, J.W. (1978) Phil. Mag. A 38, 259Google Scholar
  4. Cochran, W. (1952) Actra Cryst. 5 630–633.CrossRefGoogle Scholar
  5. Doyle, P.A. and Turner, P. (1968) Acta Cryst. A24, 390–397.Google Scholar
  6. Gjønnes, J. & Høier, R. (1971) Acta Cryst. A27, 313–316.Google Scholar
  7. Gjønnes, K., Gjønnes,. J., Zhu, J. and Spence, J.C.H. (1988) Acta Cryst.Google Scholar
  8. Gjønnes, J. & Taftø, J. (1978) Int. Conf. Electron Diffraction, London 1978, Bristol: Inst.Phys.p150–155.Google Scholar
  9. Goodman, P. and Lehmpfuhl, G. (1967) Acta Cryst. 22, 14–24.CrossRefGoogle Scholar
  10. Howie, A. (1963) Proc. Roy. Soc. A271, 268–287.Google Scholar
  11. Høier, R. (1972) Phys. Stat. Sol. A11, 597–610.CrossRefGoogle Scholar
  12. Kelly, P.M., Jostens, A., Blake, R.G. and Napier, J.G. (1975). Phys.Stat. Sol. (a) 31, 771–780.CrossRefGoogle Scholar
  13. Matsuhata, H. & Gjønnes, J. (1988) EUREM 88, Inst. Phys. Conf. Ser. No 93, Vol 2 19–20.Google Scholar
  14. Moodie, A.F. (1979) Chemica Scripta 14, 21–22.Google Scholar
  15. Olsen, A., Goodman, P. and Whitfield, H. (1985) J. Sol. State Chem. 60, 305–15.CrossRefGoogle Scholar
  16. Reimer, L. “Transmission Electron Microscopy” Springer: Berlin 1984.Google Scholar
  17. Sellar, J.R., Imeson. D. and Humphreys, C.J. (1980) Acta Cryst. A36686–696.Google Scholar
  18. Taftø, J. & Gjønnes, J. (1985) Ultramicroscopy 17, 329–334.CrossRefGoogle Scholar
  19. Taftø, J. and Metzger, T.H. (1985) J. Appl. Cryst. 6, 110–113.CrossRefGoogle Scholar
  20. Vincent, R., Bird, D.M. and Steeds, J.W. (1984) Phil. Mag. A50, 765–86.Google Scholar
  21. Voss, R., Lehmpfuhl, G. and Smith D.J. (1980) Z. Naturforsch. 59, 973–984.Google Scholar
  22. Watanabe, D., Uyeda, R. and Fukuhara, A. (1968) Acta Cryst. A25 138–140.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Gjønnes
    • 1
  • H. Matsuhata
    • 1
    • 2
  • K. Gjønnes
    • 1
  1. 1.Department of PhysicsUniversity of OsloBlindern, OsloNorway
  2. 2.Toyota Technological InstituteTempaku, NagoyaJapan

Personalised recommendations