Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 203))

Abstract

One of the most important concerns in semiconductor heteroepitaxy is the formation of dislocations and similar defects as a result of misfit stresses. In general these defects are harmful to the electronic/optonic properties of the material and the primary interest is to avoid the defects; where not possible, as an alternative, mechanisms are to be found that reduce the defect density or the presence of defects should be restricted to areas, where they may be tolerated. Unfortunately, the mechanisms that operate to nucleate, multiply and propagate dislocations depend in many cases on the heteroepitaxial system under consideration; especially the degree of misfit, growth temperature and growth mechanism may influence the motion of dislocations and thus the defect structure that develops in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Matthews, Coherent interfaces and misfit dislocations, in: “Epitaxial Growth”, J.W. Matthews, ed., Academic Press, New York, London, (1975)

    Google Scholar 

  2. H. Strunk, W. Hagen, and E. Bauser, Low density dislocation arrays at heteroepitaxial Ge/GaAs interfaces investigated by high voltage electron microscopy,Appl.Phys. 18: 67 (1979)

    Article  CAS  Google Scholar 

  3. R. Hull, J.M. Gibson, and D.A. Smith, eds., “Initial Stages of Epitaxial Growth”, (Mat. Res. Symp. Proc. Vol. 94), Materials Research Soc., Pittburgh, PA, USA (1987)

    Google Scholar 

  4. M. S. Abrahams and C.J. Buiocchi, Cross-sectional specimens for transmission electron microscopy, J. Appl. Phys 45: 3315 (1974)

    Article  CAS  Google Scholar 

  5. W. Hagen and H.J. Queisser, In-situ x-ray topography of epitaxial Ge layers during growth, Appl. Phys. Lett. 32: 269 (1978)

    Article  CAS  Google Scholar 

  6. H. Strunk, W.Hagen, and B.O. Kolbesen, Observation of individual misfit dislocations by high-voltage electron microscopy, J. Physique, Colloque C6, 40: C6–213 (1979)

    Google Scholar 

  7. W. Hagen and H. Strunk, A new type of source generating misfit dislocations, Appl. Phys. 17: 85 (1978)

    Article  CAS  Google Scholar 

  8. W. Hagen and H. Strunk, Glide activation of grown-in dislocations in epitaxial films having almost critical thickness, in: “Electron Microscopy 1980”, Vol.4, P. Brederoo and J. van Landuyt, eds., 7.European Congr. on Electron Microscopy Foundation, Leiden, Belgium (1980), p. 372

    Google Scholar 

  9. Yu. A. Tkhorik and L.S. Khazan, “Plastic Deformation and Misfit Dislocations in Heteroepitaxial Systems”, Naukova dumka, Kiev, USSR (1983) (in russian)

    Google Scholar 

  10. V. J. Vdovin, L.A. Matveeva, G.N. Semenova, M. Ya. Skorohod, Yu. A. Tkhorik, and L.S. Khazan, Mechanism of misfit dislocation network formation in the heteroepitaxial system Ge-GaAs {001}, phys. stat. sol, a 92: 379 (1985)

    Article  Google Scholar 

  11. K. Rajan and M. Denhoff, Misfit dislocation structure at Si/SixGe1-x strained-layer interface, J. Appl. Phys. 62: 1710 (1987)

    Article  CAS  Google Scholar 

  12. H. P. Strunk and B.O. Kolbesen, Dislocations in silicon devices, in: “Defects in Crystals”, E. Mizera, ed., World Scientific, Singapore (1987), p. 208

    Google Scholar 

  13. C. A. Ball and H.J. van der Merwe, The growth of dislocation-free layers, in: “Dislocations in Solids”, Vol. 6, F.R.N. Nabarro, ed., North Holland Publ. Co., Amsterdam, New York, Oxford (1983)

    Google Scholar 

  14. P. B. Hirsch, Dislocations in Semiconductors, in: ‘Dislocations and Properties of Real Materials’, The Institute of Metals, London (1985), p. 333

    Google Scholar 

  15. K. Sumino, Dislocations in GaAs crystals, in: “Defects and Properties of Semiconductors: Defect Engineering”, J. Chikawa, K. Sumino, and K. Wada, eds., KTK Scientific Publ., Tokyo (1987), p. 3

    Chapter  Google Scholar 

  16. K. Sumino, Interaction of dislocations with impurities in silicon, ibid., p. 227

    Google Scholar 

  17. H. Strunk, U. Goesele and B.O. Kolbesen, Interstitial supersturation near phosphorus-diffused emitter zones in silicon, Appl. Phys. Lett. 34: 530 (1979)

    Article  Google Scholar 

  18. M. I. Alonso, H.P. Trah, H. Cerva, H.P. Strunk, and E. Bauser, Heteroepitaxy and seeded lateral overgrowth on silicon substrates by liquid phase epitaxy, in: “Silicon Molecular Beam Epitaxy”, J.C. Bean and L.J. Schowalter, eds., The Electrochemical Soc. Inc., Pennington, N.J., USA (1988), p. 313

    Google Scholar 

  19. J. T. McGinn, L. Jastrzebski, and J.F. Corby, Defect characterization in monocrystalline silicon grown over SiO2, J. Electrochem. Soc. 131: 398 (1984)

    Article  CAS  Google Scholar 

  20. H. P. Trah, M.I. Alonso, M. Konuma, E. Bauser, and H.P. Strunk, Liquid phase epitaxy of Si1-xGex(0<x<l) on partially masked Si-substrates, in: “Heteroepitaxy on Silicon II”, J.C.C. Fan, J.M. Phillips, and B.-Y. Tsaur, eds., (Mat. Res. Soc. Symp. Proc. Vol. 91), Materials Research Soc., Pittsburgh PA, USA (1987), p. 393

    Google Scholar 

  21. R. H. Finch, H.J. Queisser, G. Thomas, and J. Washburn, Structure and origin of stacking faults in epitaxial silicon, J. Appl. Phys. 34: 406 (1963)

    Article  CAS  Google Scholar 

  22. H. Cerva and H.P. Strunk, to be published

    Google Scholar 

  23. J. C. Bean, L.C. Feldman, A.T Fiory, S. Nakahara and J.K. Robinson, GexSi1-x/Si strained layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. Technol.A2: 436 (1984)

    Google Scholar 

  24. R. People and C.J. Bean, Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,Appl. Phys. Lett. 47:322 (1985)

    Article  CAS  Google Scholar 

  25. H. J. Queisser, Slip patterns on boron doped silicon surfaces, J. Appl. Phys. 32: 1776 (1960)

    Article  Google Scholar 

  26. H. P. Strunk and B.O. Kolbesen, Microscopy of process-related defects in silicon devices, in: “Gettering and Defect Engineering in the Semiconductor Technology”, H. Richter, ed., Institute for Physics of Semiconductors, Frankfurt/Oder, GDR (1985), p. 347

    Google Scholar 

  27. A. Bourret and W. Schröter, HREM of SiP precipitates at the (111) silicon surface during phosphorus predeposition, Ultramicroscopy 14: 97 (1984)

    Article  CAS  Google Scholar 

  28. C. J. Humphreys and R. Hull, this workshop

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Strunk, H.P. (1989). Defect Structure in Low and High Misfit Systems. In: Cherns, D. (eds) Evaluation of Advanced Semiconductor Materials by Electron Microscopy. NATO ASI Series, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0527-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0527-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7850-4

  • Online ISBN: 978-1-4613-0527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics