Defect Structure in Low and High Misfit Systems

  • Horst P. Strunk
Conference paper
Part of the NATO ASI Series book series (NSSB, volume 203)


One of the most important concerns in semiconductor heteroepitaxy is the formation of dislocations and similar defects as a result of misfit stresses. In general these defects are harmful to the electronic/optonic properties of the material and the primary interest is to avoid the defects; where not possible, as an alternative, mechanisms are to be found that reduce the defect density or the presence of defects should be restricted to areas, where they may be tolerated. Unfortunately, the mechanisms that operate to nucleate, multiply and propagate dislocations depend in many cases on the heteroepitaxial system under consideration; especially the degree of misfit, growth temperature and growth mechanism may influence the motion of dislocations and thus the defect structure that develops in the system.


Burger Vector Critical Thickness Misfit Dislocation Liquid Phase Epitaxy Dislocation Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Matthews, Coherent interfaces and misfit dislocations, in: “Epitaxial Growth”, J.W. Matthews, ed., Academic Press, New York, London, (1975)Google Scholar
  2. 2.
    H. Strunk, W. Hagen, and E. Bauser, Low density dislocation arrays at heteroepitaxial Ge/GaAs interfaces investigated by high voltage electron microscopy,Appl.Phys. 18: 67 (1979)CrossRefGoogle Scholar
  3. 3.
    R. Hull, J.M. Gibson, and D.A. Smith, eds., “Initial Stages of Epitaxial Growth”, (Mat. Res. Symp. Proc. Vol. 94), Materials Research Soc., Pittburgh, PA, USA (1987)Google Scholar
  4. 4.
    M. S. Abrahams and C.J. Buiocchi, Cross-sectional specimens for transmission electron microscopy, J. Appl. Phys 45: 3315 (1974)CrossRefGoogle Scholar
  5. 5.
    W. Hagen and H.J. Queisser, In-situ x-ray topography of epitaxial Ge layers during growth, Appl. Phys. Lett. 32: 269 (1978)CrossRefGoogle Scholar
  6. 6.
    H. Strunk, W.Hagen, and B.O. Kolbesen, Observation of individual misfit dislocations by high-voltage electron microscopy, J. Physique, Colloque C6, 40: C6–213 (1979)Google Scholar
  7. 7.
    W. Hagen and H. Strunk, A new type of source generating misfit dislocations, Appl. Phys. 17: 85 (1978)CrossRefGoogle Scholar
  8. 8.
    W. Hagen and H. Strunk, Glide activation of grown-in dislocations in epitaxial films having almost critical thickness, in: “Electron Microscopy 1980”, Vol.4, P. Brederoo and J. van Landuyt, eds., 7.European Congr. on Electron Microscopy Foundation, Leiden, Belgium (1980), p. 372Google Scholar
  9. 9.
    Yu. A. Tkhorik and L.S. Khazan, “Plastic Deformation and Misfit Dislocations in Heteroepitaxial Systems”, Naukova dumka, Kiev, USSR (1983) (in russian)Google Scholar
  10. 10.
    V. J. Vdovin, L.A. Matveeva, G.N. Semenova, M. Ya. Skorohod, Yu. A. Tkhorik, and L.S. Khazan, Mechanism of misfit dislocation network formation in the heteroepitaxial system Ge-GaAs {001}, phys. stat. sol, a 92: 379 (1985)CrossRefGoogle Scholar
  11. 11.
    K. Rajan and M. Denhoff, Misfit dislocation structure at Si/SixGe1-x strained-layer interface, J. Appl. Phys. 62: 1710 (1987)CrossRefGoogle Scholar
  12. 12.
    H. P. Strunk and B.O. Kolbesen, Dislocations in silicon devices, in: “Defects in Crystals”, E. Mizera, ed., World Scientific, Singapore (1987), p. 208Google Scholar
  13. 13.
    C. A. Ball and H.J. van der Merwe, The growth of dislocation-free layers, in: “Dislocations in Solids”, Vol. 6, F.R.N. Nabarro, ed., North Holland Publ. Co., Amsterdam, New York, Oxford (1983)Google Scholar
  14. 14.
    P. B. Hirsch, Dislocations in Semiconductors, in: ‘Dislocations and Properties of Real Materials’, The Institute of Metals, London (1985), p. 333Google Scholar
  15. 15.
    K. Sumino, Dislocations in GaAs crystals, in: “Defects and Properties of Semiconductors: Defect Engineering”, J. Chikawa, K. Sumino, and K. Wada, eds., KTK Scientific Publ., Tokyo (1987), p. 3CrossRefGoogle Scholar
  16. 16.
    K. Sumino, Interaction of dislocations with impurities in silicon, ibid., p. 227Google Scholar
  17. 17.
    H. Strunk, U. Goesele and B.O. Kolbesen, Interstitial supersturation near phosphorus-diffused emitter zones in silicon, Appl. Phys. Lett. 34: 530 (1979)CrossRefGoogle Scholar
  18. 18.
    M. I. Alonso, H.P. Trah, H. Cerva, H.P. Strunk, and E. Bauser, Heteroepitaxy and seeded lateral overgrowth on silicon substrates by liquid phase epitaxy, in: “Silicon Molecular Beam Epitaxy”, J.C. Bean and L.J. Schowalter, eds., The Electrochemical Soc. Inc., Pennington, N.J., USA (1988), p. 313Google Scholar
  19. 19.
    J. T. McGinn, L. Jastrzebski, and J.F. Corby, Defect characterization in monocrystalline silicon grown over SiO2, J. Electrochem. Soc. 131: 398 (1984)CrossRefGoogle Scholar
  20. 20.
    H. P. Trah, M.I. Alonso, M. Konuma, E. Bauser, and H.P. Strunk, Liquid phase epitaxy of Si1-xGex(0<x<l) on partially masked Si-substrates, in: “Heteroepitaxy on Silicon II”, J.C.C. Fan, J.M. Phillips, and B.-Y. Tsaur, eds., (Mat. Res. Soc. Symp. Proc. Vol. 91), Materials Research Soc., Pittsburgh PA, USA (1987), p. 393Google Scholar
  21. 21.
    R. H. Finch, H.J. Queisser, G. Thomas, and J. Washburn, Structure and origin of stacking faults in epitaxial silicon, J. Appl. Phys. 34: 406 (1963)CrossRefGoogle Scholar
  22. 22.
    H. Cerva and H.P. Strunk, to be publishedGoogle Scholar
  23. 23.
    J. C. Bean, L.C. Feldman, A.T Fiory, S. Nakahara and J.K. Robinson, GexSi1-x/Si strained layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. Technol.A2: 436 (1984)Google Scholar
  24. 24.
    R. People and C.J. Bean, Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,Appl. Phys. Lett. 47:322 (1985)CrossRefGoogle Scholar
  25. 25.
    H. J. Queisser, Slip patterns on boron doped silicon surfaces, J. Appl. Phys. 32: 1776 (1960)CrossRefGoogle Scholar
  26. 26.
    H. P. Strunk and B.O. Kolbesen, Microscopy of process-related defects in silicon devices, in: “Gettering and Defect Engineering in the Semiconductor Technology”, H. Richter, ed., Institute for Physics of Semiconductors, Frankfurt/Oder, GDR (1985), p. 347Google Scholar
  27. 27.
    A. Bourret and W. Schröter, HREM of SiP precipitates at the (111) silicon surface during phosphorus predeposition, Ultramicroscopy 14: 97 (1984)CrossRefGoogle Scholar
  28. 28.
    C. J. Humphreys and R. Hull, this workshopGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Horst P. Strunk
    • 1
  1. 1.Technical University Hamburg-HarburgHamburg 90Germany

Personalised recommendations