Advertisement

The Microstructure of GaAs/Si Films Studies as a Function of Heat Treatment

  • A. Rocher
  • H. Heral
  • M. N. Charasse
  • A. Georgakilas
  • J. Chazelas
  • J. P. Hirtz
  • H. Blanck
  • J. Siejka
Conference paper
Part of the NATO ASI Series book series (NSSB, volume 203)

Abstract

The effect of heat treatments applied to a 400 nm GaAs layer grown by MBE on a (001) silicon substrate is discussed. These heat treatments have been applied during or after the growth of the GaAs, in order to improve the quality of the layer. A substantial improvement of the crystalline quality, measured by RBS, is observed. The density of threading dislocations decreases after heat treatments. Specimens have been also studied by TEM. X-TEM observations show an interface roughness of about 1.5 nm and both 60° and Lomer interfacial dislocations are seen. Misfit dislocation networks attain a limited size. Threading dislocations are often located at the limit of these dislocation networks.

Keywords

Dislocation Density Rapid Thermal Annealing Bright Field Image Crystalline Quality Misfit Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    H.KROEMER, Mat. Res. Soc. Symp., 67, 3, 1986.CrossRefGoogle Scholar
  2. /2/.
    Z.LILIENTAL-WEBER, E.R.WEBER, J.WASHBURN, T.Y.LIU and H.KROEMER, NATO Advenced Research Workshop Heterostructure on Si. Cargese, France (1988).Google Scholar
  3. /3/.
    N.CHAND, R.PEOPLE, P.A.BAIOCCHI, K.W.WECHT and A.Y.CHO, Appl. Phys. Lett. 49, 815, (1986).CrossRefGoogle Scholar
  4. /4/.
    C.CHOI, N.OTSUKA, G.MUNNS, R.HOUDRE, H.MORKOC, S.L.ZHANG, D.LEVI and M.V. KLEIN, Appl. Phys. Lett. 60, 992, (1987).CrossRefGoogle Scholar
  5. /5/.
    R.M.LUM, J.K.KLINGERT, B.A.DAVIDSON and M.G.LAMONT, Apll. Phys. Lett. 51, 36, (1987).CrossRefGoogle Scholar
  6. /6/.
    H.HERAL, A.ROCHER, M.N.CHARASSE, A.GEORGALIKAS, J.CHAZELAS, J.P.HIRTZ, H.BLANK and J.SIEJKA, Mat. Res. Soc. Symp., 102, 51, (1987).CrossRefGoogle Scholar
  7. /7/.
    R.HULL, S.J.ROSNER, S.M.KOCH and J.S.HARRIS, Jr., Appl. Phys. Lett. 49, 1714, (1986).CrossRefGoogle Scholar
  8. /8/.
    N.OTSUKA, C.CHOI, Y.NAKAMURA, S.NAGAKURA, R.FISCHER, C.K.PENG and H.MORKOC, Appl. Phys. Lett. 49., 277, (1986).CrossRefGoogle Scholar
  9. /9/.
    H.L.TSAI and J.W.LEE, Appl. Phys. lett. 51, 130, (1987).CrossRefGoogle Scholar
  10. /10/.
    J.NARAYAN, S.SHARAN, A.R.SRIVATSA and A.S.NANDEDKAR, Mat. Sci. and Eng., B1, 105, (1988).Google Scholar
  11. /11/.
    K.ISHIDA, M.AKIYAMA and S.NISHI, Jap. J. Appl. Phys. 25, L288, (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Rocher
  • H. Heral
    • 1
  • M. N. Charasse
  • A. Georgakilas
  • J. Chazelas
  • J. P. Hirtz
    • 2
  • H. Blanck
    • 3
  • J. Siejka
    • 4
  1. 1.Laboratoire d’Optique Electronique du CNRS-29ToulouseFrance
  2. 2.Thomson-CSF/LCR - Domaine de CorbevilleOrsayFrance
  3. 3.Thomson-SC/DAG - Domaine de CorbevilleOrsayFrance
  4. 4.G.P.S./E.N.S.Université Paris VII Tour 23ParisFrance

Personalised recommendations