Skip to main content

Elastic Relaxation and TEM Image Contrasts in Thin Composition-Modulated Semiconductor Crystals

  • Conference paper
Evaluation of Advanced Semiconductor Materials by Electron Microscopy

Part of the book series: NATO ASI Series ((NSSB,volume 203))

Abstract

Strong image contrasts can arise in transmission electron micrographs from remarkably small strain gradients in thinned crystals. Shear strains with amplitudes as small as 10-4 can produce detectable contrasts under optimum imaging conditions [1], much more than would be predicted on the basis of the perturbed projected potential alone. Strong dynamical scattering effects, stimulated by the bending of diffracting lattice planes, are primarily responsible for these strong contrasts. Internal shear strains (ie lattice bending) can result from stresses associated with crystal defects, such as dislocations, point defects, coherent interfaces, planar defects, inclusions, compositional inhomogeneities, surfaces, surface steps and surface irregularities. Temperature gradients, due to uneven electron beam heating, can also generate internal stresses. Although it is possible to fabricate semiconductor materials which are essentially free of structural defects, most operational semiconductors contain dopants and interfaces. Atomic radii of dopant atoms are generally not identical to that of the host lattice, thus static disorder is introduced into the lattice. Molecular beam epitaxy permits the microfabrication of semiconductor materials which have coherent strain fields deliberately introduced, such as strained layer superlattices [2]. If structural details of such materials are to be interpreted accurately from electron micrographs, it is important that the imaging and structural artifacts caused by internal stresses be thoroughly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. J. Treacy, J. M. Gibson & A. Howie, On Elastic Relaxation and Long Wavelength Microstructures in Spinodally Decomposed InxGa1-xAsyP1-y Epitaxial Layers, Phil. Mag. 51:389 (1985).

    CAS  Google Scholar 

  2. K. Ploog, Microscopical structuring of solids by molecular beam Epitaxy-Spatially Resolved Materials Synthesis, Angew. Chemie, 27:593 (1988).

    Article  Google Scholar 

  3. H. Hashimoto & M. Mannani, On The Contrast Of The Electron Microscopic Image Due To An Edge Dislocation, Acta Cryst., 13: 363 (1960).

    Article  CAS  Google Scholar 

  4. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of Thin Crystals, ” Krieger, New York (1977).

    Google Scholar 

  5. M. F. Ashby & L. M. Brown, Diffraction Contrast From Spherically Symmetrical Coherency Strains, Phil. Mag. 8:1083 (1963a); On Diffraction Contrast From Inclusions, Phil. Mag. 8:1649 (1963b).

    Article  Google Scholar 

  6. D. J. H. Cockayne, I. L. F. Ray & M. J. Whelan, Investigations Of Dislocation Strain Fields Using Weak Beams, Phil. Mag. 20:1265 (1969).

    Article  CAS  Google Scholar 

  7. W. M. Stobbs & C. H. Sworn, The Weak Beam Technique As Applied To The Determination Of The Stacking Fault Energy Of Copper, Phil. Mag. 24:1365 (1971).

    Article  CAS  Google Scholar 

  8. A. Putnis and J. D. C. McConnell, “Principles Of Mineral Behaviour, ” Elsevier, New York (1980).

    Google Scholar 

  9. P. Hénoc, A. Izrael, M. Quillec & H. Launois, Composition Modulation In InxGa1-xASx;P1-y LPE Layers Lattice Matched To InP Substrates, Appl. Phys. Letts., 40:963 (1980).

    Article  Google Scholar 

  10. F. Glas, Démixtion et ordre local dans les composes semiconducteurs III-V: etude par microscopie électronique et microanalyse des couches épitaxiées d’alliages InGaAsP. Thesis, No 3212, Université de Paris-sud, Orsay (1986): Also, see article by Glas in this proceedings

    Google Scholar 

  11. D. Cherns, P. D. Greene, A. Hainsworth & A. R. Preston, Phase Separation in InGaAsP Epitaxial Layers, in: “Microscopy of Semiconductor Materials”, eds. A. G. Cullis & P. D. Augustus, Inst. Phys. conf. Ser. No. 87, p83, The Institute of Physics, London- Bristol (1987).

    Google Scholar 

  12. B. de Cremoux, P. Hirtz & J. Ricciardi, On The Presence Of A Solid Immiscibility Domain In The GaInAsP Phase Diagram, in: “Gallium Arsenide And related Compounds” H. W. Thim, ed., Inst. Phys. Conf. Ser. No 56, p 115, The Institute of Physics, London (1980).

    Google Scholar 

  13. B. de Cremoux, Instability criteria in ternary and quaternary III-V epitaxial solid solutions, J. Phys., Paris, 43:C5–19 (1982).

    Google Scholar 

  14. G. B. Stringfellow, Miscibility gaps in quaternary III/V alloys, J. Crystal Growth, 58:194(1982).

    Article  CAS  Google Scholar 

  15. J. P. Gowers, TEM image contrast from clustering in Ga-In containing III-V alloys, Appl. Phys. A., 31:23 (1983).

    Article  Google Scholar 

  16. F. Glas & P. Hénoc, Study of static atomic displacements by channelled-electron- beam-induced X-ray emission: Application to In0.53Ga0.47As alloys., Phil. Mag., 56:311, (1987).

    Article  CAS  Google Scholar 

  17. M. Ichimura & A. Sasaki, Bond statistics and their influence on materials properties of III-V quaternary alloys of type (AB)III (CD)V, J. Electronic Mats., 17:305 (1988).

    Article  CAS  Google Scholar 

  18. M. M. J. Treacy & J. M. Gibson, On the detection of point defects in crystals using high-angle diffuse scattering in the STEM, Inst. Phys. Conf. Ser. No. 61, p 263 The Institute of Physics, London (1982).

    Google Scholar 

  19. F. Glas, M. M. J. Treacy, M. Quillec, & H. Launois, Interface spinodal decomposition in InxGa1-xAsyP1-y lattice matched to InP, J. Phys., Paris, 43:C5–11 (1982).

    Article  Google Scholar 

  20. J. M. Gibson, R. Hull, J. C. Bean & M. M. J. Treacy, Elastic relaxation in transmission electron microscopy of strained-layer superlattices, Appl. Phys. Letts., 46:649 (1985).

    Article  CAS  Google Scholar 

  21. G. C. Weatherly, D. D. Perovic & D. C. Houghton, Elastic relaxation effects in strained layer Si-Ge superlattices, in: “Microscopy of Semiconductor Materials”, eds A. G. Cullis & P. D. Augustus, Inst. Phys. Conf. Ser. No. 87, p237, The Institute of Physics, London-Bristol (1987).

    Google Scholar 

  22. J. M. Gibson & M. M. J. Treacy, The effect of elastic relaxation on the local structure of lattice-modulated thin films, Ultramicroscopy, 14:345 (1984).

    Article  Google Scholar 

  23. S. McKernan, B. C. De Cooman, J. R. Conner, S. R. Summerfelt & C. B. Carter, Electron Microscope Imaging of II-V Compound Superlattices, in: “Microscopy of Semiconductor Materials”, eds A. G. Cullis & P. D. Augustus, Inst. Phys. conf. Ser. No. 87, p201 The Institute of Physics, London-Bristol (1987).

    Google Scholar 

  24. U. Bangert & P. Charsley, Diffraction contrast of tilted interfaces in Ga0.7Al0.3As/ GaAs heterostructures, in: “Microscopy of Semiconductor Materials”, Inst. Phys. Conf. Ser. No. 87, p89, The Institute of Physics, London (1987).

    Google Scholar 

  25. A. Howie & Z. S. Basinski, Approximations of the dynamical theory of diffraction contrast, Phil. Mag., 17:1039 (1968).

    Article  Google Scholar 

  26. J. M. Gibson, private communication, (1987).

    Google Scholar 

  27. C. J. Humphreys, D. J. Eaglesham, D. M. Maher & H. L. Fraser, CBED and CBIM from semiconductors and Superconductors, Ultramicroscopy, 26:13 (1988).

    Article  CAS  Google Scholar 

  28. N. Yamamoto, REM of GaAs/AlxGa1-xAs superlattice, in “Proceedings of the 11th International Congress on Electron Microscopy”, eds. T. Inura, S. Maruse & T. Suzuki, Japanese Society of Electron Microscopy, Vol 11:1481(1986).

    Google Scholar 

  29. R. Vincent, D. Cherns, S. J. Bailey & H. Morkoç, Structure of AlGaAs/GaAs multilayers imaged in superlattice reflections, Phil. Mag. Letts., 56, Nol:l (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Treacy, M.M.J. (1989). Elastic Relaxation and TEM Image Contrasts in Thin Composition-Modulated Semiconductor Crystals. In: Cherns, D. (eds) Evaluation of Advanced Semiconductor Materials by Electron Microscopy. NATO ASI Series, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0527-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0527-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7850-4

  • Online ISBN: 978-1-4613-0527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics