Skip to main content

TEM and STEM Observations of Composition Variations in III-V Semiconductors

  • Conference paper

Part of the book series: NATO ASI Series ((NSSB,volume 203))

Abstract

In first approximation, the quaternary AxBl-xCyD1-y III-V semiconducting alloys have the same sphalerite structure1 as their ‘constituent binaries’ AC, AD, BC and BD; their lattice parameter a and their band gap energy vary continuously with the compositions x and y. These materials are thus attractive for the fabrication of optoelectronic devices, because a suitable choice of these in principle independent compositions usually allows both the epitaxy of a thin alloy layer on a bulk binary substrate and the subsequent obtaining of a device emitting or detecting light at a given wavelength. Conversely, any inhomogeneity in the alloy is likely to induce local variations of its structural and electronic properties. Such composition variations are either introduced intentionally to obtain novel effects, for instance in superlattices, or unintentionally. In the latter case, they are often caused by changes in the growth conditions of the layer: this may happen in Liquid Phase Epitaxy (LPE) when the liquid bath changes composition as growth proceeds, or in Chemical Vapor Deposition2, because of instabilities in the growth process; the composition then varies only in the growth direction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Phillips, “Bonds and Bands in Semiconductors, ”Academic Press, New York (1973).

    Google Scholar 

  2. S. K. Maksimov and E. N. Nagdaev, Self-modulation of the composition of GaAsP epitaxial films, Sov. Phys. Dokl. 24:297 (1979).

    Google Scholar 

  3. G. B. Stringfellow, Calculation of ternary and quaternary III-V phase diagrams, J. Cryst. Growth 27:21 (1974).

    CAS  Google Scholar 

  4. G. B. Stringfellow, Spinodal decomposition and clustering in III-V alloys, J. Electron. Mat. 11:903 (1982).

    Article  CAS  Google Scholar 

  5. P. Hénoc, A. Izrael, M. Quillec and H. Launois, Composition modulation in liquid phase epitaxial InxGa1-xASyP1-y layers lattice matched to InP substrates, Appl. Phys. Lett. 40:963 (1982).

    Article  Google Scholar 

  6. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of thin crystals, ”R. E. Krieger, Malabar (1977).

    Google Scholar 

  7. F. Glas, “Démixtion et ordre local dans les composés semiconducteurs III-V: étude par microscopie électronique et microanalyse des couches épitaxiées d’alliages InGaAsP, ” Thèse de Doctorat d’Etat, Université Paris XI (1986). Copies available from the author.

    Google Scholar 

  8. M. M. J. Treacy, J. M. Gibson and A. Howie, On elastic relaxation and long wavelength microstructures in spinodally decomposed InxGa1-xAsyP1-yepitaxial layers, Phil. Mag. A 51:389 (1985).

    Google Scholar 

  9. F. Glas, M. M. J. Treacy, M. Quillec and H. Launois, Interface spinodal decomposition in LPE InxGa1-xASyP1-y lattice matched to InP, J. de Physicrue43:C5–11 (1982).

    Google Scholar 

  10. H. Launois, M. Quillec, F. Glas and M. J. Treacy, Interface spinodal decomposition in LPE InxGa1-xASyP1-y lattice-matched to InP, in: “GaAs and Related Compounds 1982, ” Inst. Phys. Conf. Ser. No 65, G. E. Stillman, ede, The Institute of Physics, London (1983).

    Google Scholar 

  11. S. Mahajan, B. V. Dutt, H. Temkin, R. J. Cava and W. A. Bonner, Spinodal decomposition in InGaAsP epitaxial layers, J. Crvst. Growth 68:589 (1984).

    Article  CAS  Google Scholar 

  12. A. G. Norman and G. R. Booker, TEM and TED studies of alloy clustering in GaInAsP, GaInAs and GaInP epitaxial layers, in: “Microscopy of Semiconducting Materials 1985”, Inst. Phys. Conf. Ser. No 76, A. G. Cullis and D. B. Holt, eds., Adam Hilger, Bristol (1985).

    Google Scholar 

  13. D. Cherns, P. D. Greene, A. Hainsworth and A. R. Preston, Phase separation in GaInAsP epitaxial layers, in: “Microscopy of Semiconducting Materials 1987”, Inst. Phys. Conf. Ser. No 87, A. G. Cullis and P. D. Augustus, eds., Institute of Physics, Bristol (1987).

    Google Scholar 

  14. G. W. Lorimer, Quantitative X-ray microanalysis of thin specimens, in: “Quantitative Electron Microscopy, ” J. N. Chapman and A. J. Craven, eds., Scottish Universities Summer School in Physics, Edinburgh (1984).

    Google Scholar 

  15. B. de Crémoux, Instability criteria in ternary and quaternary III-V epitaxial solid solutions, J. de Physique 43:C5–19 (1982).

    Article  Google Scholar 

  16. J. W. Cahn, Spinodal decomposition, Trans. Met. Soc. AIME 242:166.

    Google Scholar 

  17. M. Quillec, C. Daguet, J.-L. Benchimol and H. Launois, InxGa1-xASyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy, Appl. Phys. Lett. 40:325 (1982).

    Article  CAS  Google Scholar 

  18. G. B. Stringfellow, The importance of lattice mismatch in the growth of GaxInj_xP epitaxial crystals J. Appl. Phys. 43:3455 (1972).

    Article  CAS  Google Scholar 

  19. J. Bellessa, C. Gors, P. Launois, M. Quillec and H. Launois, Extended x-ray absorption fine structures study of short range order in InxGa1-xAS and GaxAl1_xAs alloys, in: “GaAs and related compounds 1982, ” Inst. Phys. Conf. Ser. No 65, G. E. Stillman, ed., The Institute of Physics, London (1983).

    Google Scholar 

  20. J. C. Mikkelsen and J. B. Boyce, Extended x-ray-absorption fine-structure study of GaxIn1_xAs random solid solutions, Phys. Rev. B 28:7130 (1983).

    Google Scholar 

  21. G. P. Srivastava, J. L. Martins and A. Zunger, Atomic structure and ordering in semiconductor alloys, Phys. Rev.B 31:2561 (1985).

    Google Scholar 

  22. P. Letardi, N. Motta and A. Balzarotti, Atomic bonding and thermodynamic properties of pseudo-binary semiconducting alloys, J. Phys. C 20:2853 (1987).

    Google Scholar 

  23. F. Glas, Elastic state and thermodynamical properties of inhomogeneous epitaxial layers: Application to immiscible III-V alloys, J.Appl. Phys. 62:3201 (1987).

    Article  CAS  Google Scholar 

  24. F. Glas, P. Hénoc and H. Launois, TEM and STEM study of the microstructure of ternary and quaternary III-V epitaxial layers, in: “Microscopy of Semiconducting Materials 1985”, Inst. Phys. Conf. Ser. No 76, A. G. Cullis and D. B. Holt, eds., Adam Hilger, Bristol (1985).

    Google Scholar 

  25. J. S. Roberts, G. B. Scott and J. P. Gowers, Structural and photoluminescent properties of GaxIn1-xP (x~0.5) grown on GaAs by molecular beam epitaxy, J.Appl. Phys. 52:4018 (1981).

    Article  CAS  Google Scholar 

  26. J. P. Gowers, TEM image contrast from clustering in Ga-In containing III-V alloysAppl. Phys A 31:23 (1983).

    Google Scholar 

  27. S. N. G. Chu, S. Nakahara, K. E. Strege and W. D. Johnston, Surface layer spinodal decomposition in In1-xGaxASyP1-y and InxGa1-xAs grown by hydride transport vapor-phase epitaxy, J. Appl. Phys. 57:4610 (1985).

    Article  CAS  Google Scholar 

  28. O. Ueda, S. Isozumi and S. Komiya, Composition-modulated structures in InGaAsP and InGaP liquid phase epitaxial layers grown on (001) GaAs substrates, Jap. J. Appl. Phys. 23:L241 (1984).

    Article  Google Scholar 

  29. T. H. Chiu, W. T. Tsang, S. N. G. Chu, J. Shah and J. A. Ditzenberger, Molecular beam epitaxy of GaSb0 5As0 5 and AlxGa1-xSbyAs1-y lattice matched to InPAppl. Phys. Lett. 46:408 (1985)

    Article  CAS  Google Scholar 

  30. F. Glas and P. Hénoc, Study of static atomic displacements by channelled-electron-beam-induced x-ray emission: Application to In0 53Ga0 47As alloys, Phil. Mag. A 56:311 (1987).

    Article  CAS  Google Scholar 

  31. M. Podgórny, M. T. Czyzyk, A. Balzarotti, P. Letardi, N. Motta, A. Kisiel and M. Zimnal-Starnawska, Crystallographic structure of ternary semiconducting alloys, Solid State Comm. 55:413 (1985).

    Article  Google Scholar 

  32. S. Yamazaki, A. Ushirokawa and T. Katoda, Effect of clusters on long- wavelength optical phonons in Ga1-xInxAs J.Appl.Phys. 51:3722 (1980).

    Article  CAS  Google Scholar 

  33. P. Blood and A. D. C. Grassie, Influence of clustering on the mobility of III-V semiconductor alloysJ.Appl. Phys. 56:1866 (1984).

    Article  CAS  Google Scholar 

  34. J. H. Marsh, Effects of compositional clustering on electron transport in In0 53Ga0 47 As Appl. Phys. Lett. 41:732 (1982).

    Article  CAS  Google Scholar 

  35. A. G. Norman, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Glas, F. (1989). TEM and STEM Observations of Composition Variations in III-V Semiconductors. In: Cherns, D. (eds) Evaluation of Advanced Semiconductor Materials by Electron Microscopy. NATO ASI Series, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0527-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0527-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7850-4

  • Online ISBN: 978-1-4613-0527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics