Skip to main content

Neurotransmitter Assessment in Neuropsychiatric Disorders of Childhood

  • Chapter
Application of Basic Neuroscience to Child Psychiatry

Abstract

An appreciation for the potential role of anomalous neurobiologic processes in the etiology of childhood psychiatric illness did not emerge as a consistent theme of clinical research until the early 1960s. Before that time, etiologic constructs were premised on an interaction between psychodynamic factors and poorly defined constitutional factors. However, observation of the powerful effects of neuropharmacologic agents on behavior and growing knowledge of the functional neuroanatomy of neurotransmitter systems provided a strong impetus to biologically oriented research in the area of child and adolescent psychiatry. Since then, a pattern has emerged whereby clinical investigators incorporate newly identified and measurable components of the neural substrate into heuristic schemes of causation, in an attempt to advance our understanding of the pathophysiology of child psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Twarog BM, Page IH : Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175:157–61, 1953

    PubMed  CAS  Google Scholar 

  2. Amin AH, Crawford TBB, Gaddum JH : The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol (Lond) 126:596–618, 1954

    CAS  Google Scholar 

  3. Gaddum JH : Drugs antagonistic to 5-hydroxytryptamine, in Gaddum JH (ed): Ciba Foundation Symposium on Hypertension. Humoral and Neurogenic Factors. Boston, Little & Brown, 1954, pp 75–77

    Google Scholar 

  4. Wooley DW, Shaw E : A biochemical and pharmacological suggestion about certain mental disorders. Science 119:587–588, 1954

    Google Scholar 

  5. Schain RJ, Freedman DX : Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320, 1961

    PubMed  CAS  Google Scholar 

  6. Falck B, Hillarp N-A, Thieme G, et al : Florescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354, 1962

    CAS  Google Scholar 

  7. Sharman DF : A fluorimetric method for the estimation of 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid) and its identification in brain tissue. Br J Pharmacol 20:204–213, 1963

    CAS  Google Scholar 

  8. Anden NE, Roos BE, Werdinius B : On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorometric method. Life Sci 7:448–458, 1963

    PubMed  CAS  Google Scholar 

  9. Gerbode FA, Bowers MB : Measurement of acid monoamine metabolites in human and animal cerebrospinal fluid. J Neurochem 15:1053–1055, 1968

    PubMed  CAS  Google Scholar 

  10. Levy DM : On the problem of movement restraint: Tics, stereotyped movements, hyperactivity. Am J Orthopsychiatry 14:644–671, 1944

    Google Scholar 

  11. Berkson G : Abnormal stereotyped motor acts, in Zubin J Hunt HF(eds): Comparative Psychopathology - Animal and Human. New York, Grune & Stratton, 1967, pp 76–94

    Google Scholar 

  12. Randrup A, Munkvad I : Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10, 1974

    PubMed  CAS  Google Scholar 

  13. Cohen DJ, Shaywitz BA, Johnson WT, et al : Biogenic amines in autistic and atypical children. Cerebrospinal fluid measures of homovanillic acid and 5-hydroxyindoleacetic acid. Arch Gen Psychiatry 31:845–853, 1974

    PubMed  CAS  Google Scholar 

  14. Kow LM, Pfaff DW : Neuromodulatory actions of peptides. Annu Rev Pharmacol Toxicol 28:163–188, 1988

    PubMed  CAS  Google Scholar 

  15. Kaczmarek LK, Levitan IB : Neuromodulation. The Biochemical Control of Neuronal Excitability. New York, Oxford University Press, 1987

    Google Scholar 

  16. Weizman R, Weizman A, Tyano S et al : Humoral-endorphin blood levels in autistic, schizophrenic, and healthy subjects. Psychopharmacology 82:368–370, 1984

    PubMed  CAS  Google Scholar 

  17. Gillberg C, Terenius L, Lonnerholm G : Endorphin activity in childhood psychosis. Spinal fluid levels in 24 cases. Arch Gen Psychiatry 42:780–783, 1985

    PubMed  CAS  Google Scholar 

  18. Leckman JF, Riddle MA, Berrettini WH, et al: Elevated CSF levels of dynorphin A (l-8) in Tourette’s syndrome. Submitted

    Google Scholar 

  19. Berridge MJ : Isositol triphosphate as a second messenger in signal transduction. Ann NY Acad Sci 494:39–51, 1987

    PubMed  CAS  Google Scholar 

  20. Naim AC, Hemmings HC Jr, Greengard P: Protein kinases in the brain. Annu Rev Biochem 54:931–976, 1985

    Google Scholar 

  21. Gilman AG : G-proteins: Transducer of receptor-generated signals. Annu Rev Biochem 56:615–649, 1987

    PubMed  CAS  Google Scholar 

  22. Worley PF, Baraban JM, Snyder SH : Beyond receptors: Multiple second messenger systems in brain. Ann Neurol 21:217–229, 1987

    PubMed  CAS  Google Scholar 

  23. Nowycky MC, Fox AP, Tsien RW : Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (Lond) 316:440–443, 1985

    CAS  Google Scholar 

  24. Hoshino Y, Hisashi K, Yashima Y, et al : Plasma cyclic AMP in psychiatric diseases of childhood. Folia Psychiatr Neurol Jpn 34:9–16, 1980

    PubMed  CAS  Google Scholar 

  25. Ebstein RP, Lerer B, Bennett ER, et al : Lithium modulation of second messenger signal amplification in man: Inhibition of phosphatidyl-inositol-specific phospholipase C and adenylate cyclase activity. Psychiatry Res 24:45–52, 1988

    PubMed  CAS  Google Scholar 

  26. Mooney JJ, Schatzberg AF, Cole JO : Rapid antidepressant response to alprazolam in depressed patients with high catecholamineoutput and heterologous desensitization of platelet adenylate cyclase. Biol Psychiatry 23:543–559, 1988

    PubMed  CAS  Google Scholar 

  27. Rapoport JL, Quinn PO, Bradbard G, et al : Imipramine and methylphenidate treatments of hyperactive boys. Arch Gen Psychiatry 30:789–793, 1974

    PubMed  CAS  Google Scholar 

  28. Rapaport TL, Buchsbaum MS, Weingartner H, et al : Dextroamphetamine: Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch Gen Psychiatry 37:933–943, 1980

    Google Scholar 

  29. Zametkin AJ, Rapoport JL : Neurobiology of attention deficit disorder with hyperactivity: Where have we come in 50 years. J Am Acad Child Adolesc Psychiatry 26:676–686, 1987

    PubMed  CAS  Google Scholar 

  30. Shetty T, Chase TN : Central monoamines and hyperkinesis of childhood. Neurology (NY) 26:1000–1006, 1976

    CAS  Google Scholar 

  31. Braestrup C : Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. J Pharm Pharmacol 29:463–470, 1977

    PubMed  CAS  Google Scholar 

  32. Shaywitz BA, Cohen DJ, Bowerw MB : CSF monoamine metabolites in children with minimal brain dysfunction: Evidence for alteration of brain dopamine. J Pediatr 90:67–71, 1977

    PubMed  CAS  Google Scholar 

  33. Shaywitz BA, Klopper JH, Yager RD, et al : Paradoxical response to amphetamine in developing rat pups treated with 6-hydroxydopamine. Nature (Lond) 261:153–155, 1976

    CAS  Google Scholar 

  34. Lipton SV, McGough TP, Shaywitz BA : Effects of apomorphine on escape performance and activity in developing rat pups treated with 6-hydroxydopamine. Pharmacol Biochem Behav 13:371–377, 1980

    PubMed  CAS  Google Scholar 

  35. Shaywitz SE and Shaywitz BA : Biological influences in attentional disorders, in Levine MD Carey WB Crocker AC, et al (eds): Developmental Behavioral Pediatrics. PhiladelphiaWB Saunders, 1982, pp 746–755

    Google Scholar 

  36. Breese GR, Napier TC, Mueller RA : Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: Functional supersensitivity of D-l dopamine receptors in neonatally lesioned rats. J Pharmacol Exp Ther 234:447–455, 1985

    PubMed  CAS  Google Scholar 

  37. Ungerstedt U : Measurement of neurotransmitter release by intracranial dialysis, in Marsden CA (ed): Measurement of Neurotransmitter Release In Vivo. New York, Wiley, 1984, pp 81–105

    Google Scholar 

  38. Church WH, Justice JB Jr, Neill DB: Detecting behaviorally relevant changes in extracellular dopamine with microdialysis. Brain Res 412:397–399, 1987

    PubMed  CAS  Google Scholar 

  39. Zametkin AJ, Rapaport JL : Noradrenergic hypothesis of attention deficit disorder with hyperactivity: A critical review, in Meltzer HY (ed): Psychopharmacology: The Third Generation of Progress. New York, Raven, 1987, pp 837–842

    Google Scholar 

  40. Mikkelsen E, Lake CR, Brown GL, et al : The hyperactive child syndrome: Peripheral sympathetic nervous system function and the effect of d-amphetamine. Psychiatr Res 4:157–169, 1981

    CAS  Google Scholar 

  41. Shekim WO, DeKirmenjian H, Chapel JL : Urinary catecholamine metabolites in hyperkinetic boys treated with d-amphetamine. Am J Psychiatry 134:1276–1279, 1977

    PubMed  CAS  Google Scholar 

  42. Shekim WO, DeKirmenjian H, Chapel JL : Urinary MHPG excretion in minimal brain dysfunction and its modification by d-amphetamine. Am J Psychiatry 136:667–671, 1979

    PubMed  CAS  Google Scholar 

  43. Shekim WO, Javaid J, Dans JM, et al : Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine. Biol Psychiatry 18:707–714, 1983

    PubMed  CAS  Google Scholar 

  44. Yu-cun S, Yu-Peng W : Urinary 3-methoxy-4-hydroxyphenylglycol sulfate in seventy-three schoolchildren with minimal brain dysfunction syndrome. Biol Psychiatry 19:861–870, 1984

    Google Scholar 

  45. Khan AU, DeKirmenjian H : Urinary excretion of catecholamine metabolites in hyperkinetic children. Am J Psychiatry 138:108–112, 1981

    PubMed  CAS  Google Scholar 

  46. Rapoport JL, Mikkelsen EJ, Ebert MH, et al : Urinary catecholamine and amphetamine excretion in hyperactive and normal boys. J Nerv Ment Dis 166:731–737, 1978

    PubMed  CAS  Google Scholar 

  47. Rapoport JL, Buchsbaum MS, Weingartner H, et al : Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch Gen Psychiatry 37:933–943, 1980

    PubMed  CAS  Google Scholar 

  48. Garfinkel BD, Wender PH, Sloman L, et al : Tricyclic antidepressant and methylphenidate treatment of attention deficit disorder in children. J Am Acad Child Adolesc Psychiatry 22:343–348, 1983

    CAS  Google Scholar 

  49. Zametkin A, Rapoport JL, Murphy DL, et al : Treatment of hyperactive children with monoamine oxidase inhibitors. Clinical efficacy. Arch Gen Psychiatry 42:962–966, 1985

    PubMed  CAS  Google Scholar 

  50. Gastfriend DR, Biederman J, Jellinek MS : Desipramine in the treatment of adolescents with attention deficit disorder. Am J Psychiatry 141:906–908, 1984

    PubMed  CAS  Google Scholar 

  51. Biederman J, Gastfriend DR, Jellinek MS : Desipramine in the treatment of children with attention deficit disorder. J Clin Psychopharmacol 6:359–363, 1986

    PubMed  CAS  Google Scholar 

  52. Donnelly M, Zametkin AJ, Rapoport JL, et al : Treatment of childhood hyperactivity with desipramine: Plasma drug concentration, cardiovascular effects, plasma and urinary catecholamine levels, and clinical response. Clin Pharmacol Ther 39:72–81, 1986

    PubMed  CAS  Google Scholar 

  53. Riddle MA, Hardin MT, Cho SC: Desipramine treatment of boys with attention-deficit hyperactivity disorder and tics: Preliminary clinical experience. J Am Acad Child Adolesc Psychiatry, In press.

    Google Scholar 

  54. Brown GL, Ebert MH, Hunt RD, et al : Urinary 3-methoxy-4-hydroxyphenylglycol and homovanillic acid response to d-amphetamine in hyperactive children. Biol Psychiatry 16:779–787, 1981

    PubMed  CAS  Google Scholar 

  55. Zametkin A, Rapoport JL, Murphy DL, et al : Treatment of hyperactive children with monoamine oxidase inhibitors. Plasma and urinary monoamine findings after treatment. Arch Gen Psychiatry 42:969–973, 1985

    PubMed  CAS  Google Scholar 

  56. Zametkin A, Karoum F, Linnoila M, et al : Stimulants, urinary catecholamines and indoleamines in hyperactivity: A comparison of methylphenidate and dextroamphetamine. Arch Gen Psychiatry 42:251–259, 1984

    Google Scholar 

  57. Blier P, DeMontigny C, Chaput Y : Modifications of the serotonin system by antidepressant treatments: Implications for the therapeutic response in major depression. J Clin Psychopharmacol 7:24–35S, 1987

    Google Scholar 

  58. Linnoila M, Guthrie S, Lane EA, et al : Clinical studies on norepinephrine metabolism: How to interpret the numbers. Psychiatr Res 17:229–239, 1985

    Google Scholar 

  59. Taghzouti K, Simon H, Herve D : Behavioral deficits induced by and electrolyytic lesion of the rat ventral mesencephalic tegmentum are corrected by a superimposed lesion of the dorsal noradrenergic system. Brain Res 440:172–176, 1988

    PubMed  CAS  Google Scholar 

  60. Kopin IJ, Bankiewicz KS, Harvey-White J : Assessment of brain dopamine metabolism from plasma HVA and MHPG during debrisoquin treatment: Validation in monkeys treated with MPTP. Neuropsychopharmacology 1:119–125, 1988

    PubMed  CAS  Google Scholar 

  61. Kopin IJ, Bankiewicz K, Harvey-White J : Effect of MPTP-induced parkinsonism in monkeys on the urinary excretion of HVA and MHPG during debrisoquin administration. Life Sci 43:133–141, 1988

    PubMed  CAS  Google Scholar 

  62. Andreasen NC : Brain imaging: Applications in Psychiatry. Science 239:1381–1388, 1988

    PubMed  CAS  Google Scholar 

  63. Gainey MA, Capitanio MA : Recent advances in pediatric nuclear medicine. Radiol Clin North Am 26:409–418, 1988

    PubMed  CAS  Google Scholar 

  64. Anderson GM : Monoamines in autism: An update of neurochemical research on a pervasive developmental disorder. Med Biol 65:67–74, 1987

    PubMed  CAS  Google Scholar 

  65. Wurtman RJ : Dietary treatments that affect brain neurotransmitters. Effects on calorie and nutrient intake. Ann NY Acad Sci 499:179–190, 1987

    PubMed  CAS  Google Scholar 

  66. During MJ, Freese A, Heyes MP: Extracellular concentration of serotonin and quinolinic acid, neurotransmitter and neurotoxin, in rat corpus striatum following systemic administration of L-tryptophan. Submitted.

    Google Scholar 

  67. Anderson GM, Hoshino Y : Neurochemical studies of autism, in Cohen DJ Donnellan AM(eds): Handbook of Autism and Pervasive Developmental Disorders. New York, Wiley, 1987, pp 166–191

    Google Scholar 

  68. Young SN, Kavanagh ME, Anderson GM, et al : Clinical neurochemistry of autism and associated disorders. J Aut Dev Disord 12:147–165, 1982

    CAS  Google Scholar 

  69. Todd RD, Ciaranello RD : Demonstration of inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic childhood. Proc Natl Acad Sci USA 82:612–616, 1985

    PubMed  CAS  Google Scholar 

  70. Todd RD, Hickok JM, Anderson GM, et al : Antibrain antibodies in infantile autism. Biol Psychiatry 23:644–647, 1988

    PubMed  CAS  Google Scholar 

  71. Todd RD : Pervasive developmental disorders and immunological tolerance. Psychiatr Dev 2:147–165, 1986

    Google Scholar 

  72. Campbell M : Annotation. Fenfluramine treatment of autism. J Child Psychol Psychiatry 29:1–10, 1988

    PubMed  CAS  Google Scholar 

  73. Antelman SM, Szechtman H, Chin P, et al : Tail-pinch induced eating, gnawing, and licking behavior in rats: Dependence on nigrostriatal dopamine system. Brain Res 99:319–337, 1975

    PubMed  CAS  Google Scholar 

  74. Deutsch SI : Rationale for the administration of opiate antagonists in treating infantile autism. Am J Ment Defic 90:631–635, 1986

    PubMed  CAS  Google Scholar 

  75. Gillberg C : The neurobiology of infantile autism. J Child Psychol Psychiatry 29:257–266, 1988

    PubMed  CAS  Google Scholar 

  76. Haydon PG, McCobb DP, Kater SB : Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 226:561–564, 1984

    PubMed  CAS  Google Scholar 

  77. Cohan CS, Connor JA, Kater SB : Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J Neurosci 7:3588–3599, 1987

    PubMed  CAS  Google Scholar 

  78. McCobb DP, Kater SB : Serotonin inhibition of growth cone motility is blocked by acetylcholine. Soc Neurosci Abs 12:1117, 1986

    Google Scholar 

  79. Shapiro AK, Shapiro E : Clinical efficacy of haloperidol, pimozide, penfluridol, and clonidine in the treatment of Tourette syndrome, in Friedhoff AJ Chase TN(eds): Gilles de la Tourette Syndrome. New York, Raven, 1982, pp 383–386

    Google Scholar 

  80. Shapiro AK, Shapiro E : Controlled study of pimozide vs. placebo in Tourette’s syndrome. J Am Acad Child Adolesc Psychiatry 23:161–173, 1984

    CAS  Google Scholar 

  81. Klawans HD, Nausieda PA, Goetz CL, et al : Tourette-like symptoms following chronic neuroleptic therapy, in Friedhoff AJ Chase TN(eds): Gilles de la Tourette syndrome, Adv Neurol Vol 35, 1982, pp 415–418

    Google Scholar 

  82. Feinberg M, Carroll BJ : Effects of dopamine agonists and antagonists in Tourette’s disease. Arch Gen Psychiatry 36:979–985, 1979

    PubMed  CAS  Google Scholar 

  83. Lowe TL, Cohen DJ, Detlor J : Stimulant medications precipitate Tourette’s syndrome. JAMA 247:1729–1731, 1982

    PubMed  CAS  Google Scholar 

  84. Leckman JF, Walkup JT, Riddle MA, et al : Tic disorders, in Meltzer HY (ed): Psychopharmacology: The Third Generation of Progress. New York, Raven, 1987, pp 1239–1246

    Google Scholar 

  85. Kopin IJ, Gordon EK, Jimerson DC, et al : Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenethyleneglycol. Science 219:73–75, 1983

    PubMed  CAS  Google Scholar 

  86. Leckman JF, Detlor J, Harcherik DF, et al : Short- and long-term treatment of Tourette’s disorder with clonidine: A clinical perspective. Neurology (NY) 35:343–351, 1985

    CAS  Google Scholar 

  87. Anden NE, Corrodi H, Fuxe K, et al : Evidence for a central noradrenaline receptor stimulation by clonidine. Life Sci 9:513–523, 1970

    PubMed  CAS  Google Scholar 

  88. Svensson TH, Bunney BS, Aghajanian GK : Inhibition of both noradrenergic and serotonergic neurons by the alpha-adrenergic agonist clonidine. Brain Res 92:291–306, 1975

    PubMed  CAS  Google Scholar 

  89. Leckman JF, Ort S, Caruso KA, et al : Rebound phenomena in Tourette’s syndrome after abrupt withdrawal of clonidine. Behavioral, cardiovascular, and neurochemical effects. Arch Gen Psychiatry 43:1168–1176, 1986

    PubMed  CAS  Google Scholar 

  90. Leckman JF, Cohen DJ, Price RA, et al : The pathogenesis of Tourette syndrome. A review of data and hypotheses, in Shah NS Donald AG(eds): Movement Disorders. New York, Plenum, 1986, pp 257–272

    Google Scholar 

  91. Geyer MA, Lee EHY : Effects of clonidine, piperoxane, and locus coeruleus lesion on the serotonergic and dopaminergic systems in raphe and caudate nucleus. Biochem Pharmacol 33:3399–3404, 1984

    PubMed  CAS  Google Scholar 

  92. Bunney BS, DeRiemer SA : Effects of clonidine on dopaminergic neuron activity in the substantia nigra: Possible indirect mediation by noradrenergic regulation of the serotonergic raphe system. Adv Neurol 35:99–104, 1982

    PubMed  CAS  Google Scholar 

  93. Leckman JF, Anderson GM, Cohen DJ, et al : Whole blood serotonin and tryptophan levels in Tourette’s disorder: Effects of acute and chronic clonidine treatment. Life Sci 35:2497–2503, 1984

    PubMed  CAS  Google Scholar 

  94. Riddle MA, Leckman JF, Hardin MT, et al: Fluoxetine treatment of obsessions and compulsions in patients with Tourette’s syndrome. Am J Psychiatry, in press.

    Google Scholar 

  95. Collingridge GL, James TA, MacLeod NK : Neurochemical and electrophysiological evidence for a projection from the locus coeruleus to the substantia nigra. J Physiol (Lond) 290:44P, 1979

    CAS  Google Scholar 

  96. Dray A, Gonye TJ, Oakley NR, et al : Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res 113:45–57, 1976

    PubMed  CAS  Google Scholar 

  97. Waldmeier PC : Serotonergic modulation of mesolimbic and frontal cortical dopamine neurons. Experientia 36:1092–1094, 1980

    PubMed  CAS  Google Scholar 

  98. Fuenmayor LD, Bermudez M : Effect of the cerebral tryptaminergic system on the turnover of dopamine in. the striatum of the rat. J Neurochem 44:670–674, 1985

    PubMed  CAS  Google Scholar 

  99. Benkirane S, Arbilla S, Langer SZ : A functional response to D1 dopamine receptor stimulation in the central nervous system: Inhibition of the relase of [3H]serotonin from the rat substantia nigra. Naunyn-Schmiedebergs Arch Pharmacol 335:502–507, 1987

    PubMed  CAS  Google Scholar 

  100. Manier DH, Gillespie DD, Saunders-Bush E, et al : The serotonin/noradrenaline-link in brain. The role of noradrenaline and serotonin in the regulation of density and function of beta adrenoceptors and its alteration by desipramine. Naunyn-Schmiedebergs Arch Pharmacol 335:109–114, 1987

    PubMed  CAS  Google Scholar 

  101. Quirion R, Gaudreau P, Marter J-C, et al : Possible interactions between dynorphin and dopaminergic systems in rat basal ganglia and substantia nigra. Brain Res 331:358–362, 1985

    PubMed  CAS  Google Scholar 

  102. Nylander I, Terenium L : Chronic haloperidol and clozapine differentially affect dynorphin peptides and substance P in basal ganglia of the rat. Brain Res 380:34–41, 1986

    PubMed  CAS  Google Scholar 

  103. Li S, Sivan SP, Hong JS : Regulation of the concentration of dynorphin A (l-8) in the striatonigral pathway by the dopaminergic system. Brain Res 398, 390-392, 1986

    Google Scholar 

  104. Bartfai T, Iverfeldt K, Fisone G : Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310, 1988

    PubMed  CAS  Google Scholar 

  105. Lundberg JM, Hokfelt T : Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–633, 1983

    CAS  Google Scholar 

  106. Antelman SM, Chiodo LA : Stress: Its effect on interactions among biogenic amines and role in the induction and treatment of disease, in Iversen LL Iversen SD Snyder SH(eds): Handbook of Psychopharmacology, Vol. 18. New York, Plenum, 1984, pp. 279–341

    Google Scholar 

  107. Chiodo LA, Antelman SM, Caggiula AR, et al : Reciprocal influences of activating and immobilizing stimuli on the activity of nigrostriatal dopamine neurons. Brain Res 176:385–390, 1979

    PubMed  CAS  Google Scholar 

  108. Chiodo LA, Antelman SM, Caggiula AR, et al : Sensory stimuli alter the discharge rate of dopamine (DA) neurons: Evidence for two functional types of DA cells in the substantia nigra. Brain Res 189:544–549, 1980

    PubMed  CAS  Google Scholar 

  109. Nicoll, RA: The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551, 1988

    PubMed  CAS  Google Scholar 

  110. Shepherd GM : The Synaptic Organization of the Brain. New York, Oxford University Press, 1979

    Google Scholar 

  111. Edelman GR : Neural Darwinism. The Theory of Neuronal Group Selection. New York, Basic Books, 1987

    Google Scholar 

  112. Haber SN, Watson SJ : The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024, 1985

    PubMed  CAS  Google Scholar 

  113. Lindefors N, Brodin E, Theodorsson-Norheim E, et al : Regional distribution and in vivo release of tachykinin-like immunoreactivities in rat brain: Evidence for regional differences in relative proportions of tachykinins. Regul Pept 10:217–230, 1985

    PubMed  CAS  Google Scholar 

  114. Crawley JN, Stivers JA, Blumstein LK, et al : Cholecystokinin potentiates dopamine-mediated behavior: Evidence for modulation specific to a site of co-existence. J Neurosci 5:1972–83, 1985

    PubMed  CAS  Google Scholar 

  115. Smith Y, Parent A : Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: Morphological characteristics, intrinsic organization and co-localization with somatostatin. Brain Res 372:241–252, 1986

    PubMed  CAS  Google Scholar 

  116. Haber SN, Kowall NW, Vonsattel JP et al : Gilles de la Tourette’s syndrome. A postmortem neuropathological and immunohistochemical study. J Neurol Sci 75:225–41, 1986

    PubMed  CAS  Google Scholar 

  117. Asberg M, Nordstrom P, Traskman-Bendz L : Cerebrospinal fluid studies in suicide. Ann NY Acad Sci 487:243–255, 1986

    PubMed  CAS  Google Scholar 

  118. Ritvo ER, Freeman BJ, Yuwiler A, et al : Fenfluramine therapy for autism: Promise and precaution. Psychopharmacol Bull 22:133–159, 1986

    PubMed  CAS  Google Scholar 

  119. Weinberger DR, Berman KF, Illowsky BP : Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 45:609–615, 1988

    PubMed  CAS  Google Scholar 

  120. Meissen GJ, Myers RH, Mastromauro CA, et al : Predictive testing for Huntington’s disease with use of a linked DNA marker. N Engl J Med 318:535–542, 1988

    PubMed  CAS  Google Scholar 

  121. Kidd, KK: Searching for major genes for psychiatric disorders, in Ciba Foundation Symposium 130 on Molecular Approaches to Human Polygenic Disease. Chichester, Wiley, 1987, pp 184–196

    Google Scholar 

  122. Ransohoff DF, Feinstein AR : Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 299:926–930, 1978

    PubMed  CAS  Google Scholar 

  123. Goldberg, SC: Persistent flaws in the design and analysis of psychopharmacology research, in Meltzer HY(ed): Psychopharmacology: The Third Generation of Progress. New York, Raven, 1987, pp 1005–1012

    Google Scholar 

  124. Garelis E, Sourkes TL : Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 36:625–629, 1973

    PubMed  CAS  Google Scholar 

  125. Wiesel F-A : Mass fragmentographic determination of acidic dopamine metabolites in human cerebrospinal fluid. Neurosci Lett 1:219–224, 1975

    CAS  Google Scholar 

  126. Ziegler MG, Wood JH, Lake CR, et al : Norepinephrine and 3-methoxy-4-hydroxyphenylglycol gradients in human cerebrospinal fluid. Am J Psychiatry 134:565–568, 1977

    PubMed  CAS  Google Scholar 

  127. Moir ATB, Ashcroft GW, Crawford TBB, et al : Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain 93:357–368, 1970

    PubMed  CAS  Google Scholar 

  128. Sjostrom R, Ekstedt J, Anggard E : Concentration gradients of monoamine metabolites in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 38:666–668, 1975

    PubMed  CAS  Google Scholar 

  129. Kruesi MJP, Swedo SE, Hamburger SD, et al : Concentration gradient of CSF monoamine metabolites in children and adolescents. Biol Psychiatry 24:507–514, 1988

    PubMed  CAS  Google Scholar 

  130. Pletscher A, Bartholini G, Rissot R : Metabolic fate of l-[14C]-DOPA in cerebrospinal fluid and blood plasma of humans. Brain Res 4:106–109, 1967

    PubMed  CAS  Google Scholar 

  131. Elchisak MA, Polinsky RJ, Ebert MH, et al : Contribution of plasma homovanillic acid (HVA) to urine and cerebrospinal fluid HVA in the monkey and its pharmacokinetic disposition. Life Sci 23:2339–2348, 1978

    PubMed  CAS  Google Scholar 

  132. Ashcroft GW, Dow RC, Moir ATB : The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanesthetized dog. J Physiol (Lond) 199;397-425, 1968

    Google Scholar 

  133. Bulat M : On the cerebral origin of 5-hydroxyindoleacetic acid in the lumbar cerebrospinal fluid. Brain Res 122:388–391, 1977

    PubMed  CAS  Google Scholar 

  134. Riddle MA, Anderson GM, McIntosh S, et al : Cerebrospinal fluid monoamine precursor and metabolite levels in children treated for leukemia: Age and sex effects and individual variability. Biol Psychiatry 21:69–83, 1986

    PubMed  CAS  Google Scholar 

  135. Brewerton TD, Berrettini WH, Numberger JI Jr, et al : An analysis of seasonal fluctuations of CSF monoamine metabolites and neuropeptides in normal controls: Findings with 5-HIAA and HVA. Psychiatr Res 23:257–265, 1988

    CAS  Google Scholar 

  136. Perlow MJ, Lake CR : Daily fluctuations in catecholamines, monamine metabolites, cyclic AMP, and gamma-aminobutyric acid, in Wood JH (ed): Neurobiology of Cerebrospinal Fluid. New York, Plenum, 1982, pp 63–69

    Google Scholar 

  137. Bowers MB Jr : Clinical measurements of central dopamine and 5-hydroxytryptamine metabolism: Reliability and interpretation of cerebrospinal fluid acid monoamine metabolite measures. Neuropharmacology 11:101–111, 1972

    PubMed  Google Scholar 

  138. Korf J, Van Prag HM : Amine metabolism in the human brain: Further evaluation of the probenecid test. Brain Res 221-230, 1971

    Google Scholar 

  139. Cooper JR, Bloom FH, Roth RH : The Biochemical Basis of Neuropharmacology, ed 5. New York, Oxford University Press, 1986

    Google Scholar 

  140. Commissiong JW : Monoamine metabolites: Their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol 34:1127–1131, 1985

    PubMed  CAS  Google Scholar 

  141. Trulson ME : Dietary tryptophan does not alter the function of brain serotonin neurons. Life Sci 37:1067–1072, 1985

    PubMed  CAS  Google Scholar 

  142. Moir ATB, Eccleston D : The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J Neurochem 15:1093–1108, 1968

    PubMed  CAS  Google Scholar 

  143. Edwards DJ, Rizk M, Spiker DG : Effects of L-DOPA on the excretion of alcoholic metabolites of catecholamines and trace amines in rat and human urine. Biochem Med 25:135–148, 1981

    PubMed  CAS  Google Scholar 

  144. Gibson CJ, Wurtman RJ : Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci 22:1399–1406, 1978

    PubMed  CAS  Google Scholar 

  145. Lehnert H, Reinstein DK, Strowbridge BW, et al : Neurochemical and behavioral consequences of acute, uncontrollable stress: Effects of dietary tyrosine. Brain Res 303:215–223, 1984

    PubMed  CAS  Google Scholar 

  146. Conlay LA, Maher TJ, Wurtman RJ : Tyrosine accelerates catecholamine synthesis in hemorrhaged hypotensive rats. Brain Res 333:81–84, 1985

    PubMed  CAS  Google Scholar 

  147. Hery F, Simonnet G, Bourgoin S, et al : Effect of nerve activity on the in vivo release of [3H]serotonin continuously formed from L-[3H]tryptophan in the caudate nucleus of the cat. Brain Res 169:317–334, 1979

    PubMed  CAS  Google Scholar 

  148. Ulus I, Wurtman RJ : Choline increases acetylcholine release. Lancet 1:624, 1987

    PubMed  CAS  Google Scholar 

  149. Kennett G A, Joseph MH: Does in vivo voltammetry in the hippocampus measure 5-HT release? Brain Res 236:305–316, 1982

    PubMed  CAS  Google Scholar 

  150. During MJ, Acworth IN, Wurtman RJ : Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens. Brain Res 452:378–380, 1988

    PubMed  CAS  Google Scholar 

  151. Westerink BHC, Kikkert RJ : Effect of various centrally acting drugs on the efflux of dopamine metabolites from the rat brain. J Neurochem 46:1145–1152, 1986

    PubMed  CAS  Google Scholar 

  152. Davila R, Manero E, Zumarraga M, et al : Plasma homovanillic acid as a predictor of response to neuroleptics. Arch Gen Psychiatry 45:564–567, 1988

    PubMed  CAS  Google Scholar 

  153. Wilk S, Watson E, Travis B : Evaluation of dopamine metabolism in rat striatum by a gas chromatographic technique. Eur J Pharmacol 30:238–243, 1975

    PubMed  CAS  Google Scholar 

  154. Gordon EK, Markey SP, Sherman RL, et al : Conjugated 3,4-dihydroxy phenyl acetic acid (DOPAC) in human and monkey cerebrospinal fluid and rat brain and the effects of probenecid treatment. Life Sci 18:1285–1292, 1976

    PubMed  CAS  Google Scholar 

  155. Wood JH : Sites of origin and cerebrospinal fluid concentration gradients: Neurotransmitters, their precursors and metabolites, and cyclic nucleotides, in Wood JH (ed): Neurobiology of Cerebrospinal Fluid. New York, Plenum, 1982, pp 53–62

    Google Scholar 

  156. Bartholini G, Tissot R, Pletscher A: Brain capillaries as a source of homovanillic acid in cerebrospinal fluid. Brain Res 27:163–68, 1971

    PubMed  CAS  Google Scholar 

  157. Hefti F, Melamed E, Wurtman RJ : The site of dopamine formation in rat striatum after L-DOPA administration. J Pharmacol Exp Ther 217:189–197, 1981

    PubMed  CAS  Google Scholar 

  158. Sourkes TL : On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. J Neural Trans 34:153–57, 1973

    CAS  Google Scholar 

  159. Stanley M, Traskman-Bendz L, Dorovini-Zis K : Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci 37:1279–1286, 1985

    PubMed  CAS  Google Scholar 

  160. Elsworth JD, Leahy DJ, Roth RH, et al : Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates. J Neural Trans 68:51–62, 1987

    CAS  Google Scholar 

  161. Bacopoulos NG, Maas JW, Hattox SE, et al : Regional distribution of dopamine metabolites in human and primate brain. Commun Psychopharmacol 2:281–286, 1978

    PubMed  CAS  Google Scholar 

  162. Blinkov SM, Glezer II : The Human Brain in Figures and Tables. New York, Plenum, 1968

    Google Scholar 

  163. Maas JW, Contreras SA, Seleshi E, et al : Dopamine metabolism and disposition in schizophrenic patients. Arch Gen Psychiatry 45:553–559, 1988

    PubMed  CAS  Google Scholar 

  164. Anden N-E, Grabowska-Anden M : Formation of deaminated metabolites of dopamine in noradrenaline neurons. Naunyn-Schmiedebergs Arch Pharmacol 324:1–6, 1983

    PubMed  CAS  Google Scholar 

  165. Scatton JB, Dennis T, Curet O : Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the acending noradrenergic pathways. Brain Res 298:193–196, 1984

    PubMed  CAS  Google Scholar 

  166. Anden N-E, Brabowska-Anden M, Lindgren S : Very rapid turnover of dopamine in noradrenaline cell body regions. Naunyn-Schmiedebergs Arch Pharmacol 329:258–263, 1985

    PubMed  CAS  Google Scholar 

  167. Bums RS, Chiueh CC, Markey SP, et al : A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by Af-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550, 1983

    Google Scholar 

  168. Garelis E, Sourkes TL : Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 36:625–629, 1973

    PubMed  CAS  Google Scholar 

  169. Weir RL, Chase TN, Ng LKY, et al : 5-hydroxyindoleacetic acid in spinal fluid: relative contribution from brain and spinal cord. Brain Res 52:409–412, 1973

    PubMed  CAS  Google Scholar 

  170. Post RM, Goodwin FK, Gordon E : Amine metabolites in human cerebrospinal fluid: Effects of cord transection and spinal fluid block. Science 179:897–899, 1973

    PubMed  CAS  Google Scholar 

  171. Garelis E, Young SN, Lai S, et al : Monoamine metabolites in lumbar CSF: The question of their origin in relation to clinical studies. Brain Res 79:1–8, 1974

    PubMed  CAS  Google Scholar 

  172. Maas JW, Leckman JF : Relationship between central nervous system function and plasma and urinary MHPG and other norepinephrine metabolites, in Maas JW (ed): MHPG: Basic Mechanisms and Psychopathology. Orlando, Florida, Academic, 1983, pp 33–43

    Google Scholar 

  173. Sternberg DE, Heninger GR, Roth RH : Plasma homovanillic acid as an index of brain dopamine metabolism: Enhancement with deprisoquin. Life Sci 32:2447–2452, 1983

    PubMed  CAS  Google Scholar 

  174. Maas JW, Contreras SA, Bowden CL, et al : Effects of debrisoquin on CSF and plasma HVA concentrations in man. Life Sci 36:2163–2170, 1985

    PubMed  CAS  Google Scholar 

  175. Riddle MA, Leckman JF, Cohen DJ, et al : Assessment of central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration. J Neural Transm 67:31–43, 1986

    PubMed  CAS  Google Scholar 

  176. Davidson M, Losonczy MF, Mohs RC : Effects of debrisoquin and haloperidol on plasma homovanillic acid concentration in schizophrenic patients. Neuropharmacology 1:17–23, 1987

    CAS  Google Scholar 

  177. Snider SR, Kuchel O : Dopamine: An important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr Rev 4:291–306, 1983

    PubMed  CAS  Google Scholar 

  178. Van Loon, GR, Schwartz L, Sole MJ : Plasma dopamine responses to standing and exercise in man. Life Sci 24:2273–2278, 1979

    PubMed  Google Scholar 

  179. Kendler KS, Mohs RC, Davis KL : The effects of diet and physical activity on plasma homovanillic acid in normal human subjects. Psychiatr Res 8:215–23, 1983

    CAS  Google Scholar 

  180. Davidson M, Giordani A, Mohs RC, et al : Control of extraneous factors affecting plasma homovanillic acid concentrations. Psychiatr Res 20:307–312, 1987

    CAS  Google Scholar 

  181. Pettinger WA, Kom A, Spieger H : Debrisoquin, a selective inhibitor of intraneuronal monoamine oxidase in man. Clin Pharmacol Ther 10:667–674, 1969

    PubMed  CAS  Google Scholar 

  182. Medina MA, Giachetti A, Shore PA : On the physiologic disposition and possible mechanism of the antihypertensive action of debrisoquin. Biochem Pharmacol 18:891–901, 1969

    PubMed  CAS  Google Scholar 

  183. Moe RA, Bates HM, Palokski ZM : Cardiovascular effects of 3,4-dihydro-2(lH)isoquinoline carboxamidine (Declinax). Curr Ther Res 6:299–318, 1964

    PubMed  CAS  Google Scholar 

  184. Maas JW, Hattox SE, Landis DH : Differential effects on brain catecholamines by debrisoquin. Biochem Pharmacol 28:3153–3156, 1979

    PubMed  CAS  Google Scholar 

  185. Swann AC, Maas JW, Hattox SE, et al : Catecholamine metabolites in human plasma as indices of brain function: Effects of debrisoquin. Life Sci 27:1857–1862, 1980

    PubMed  CAS  Google Scholar 

  186. Riddle MA, Leckman JF, Anderson GM, et al : Assessment of dopaminergic function in children and adults: Long and brief debrisoquin administration combined with plasma homovanillic acid. Psychopharmacol Bull 23:411–414, 1987

    PubMed  CAS  Google Scholar 

  187. Sack DA, James SP, Doran AR : The diurnal variation in plasma homovanillic acid level persists but the variation in 3-methoxy-4-hydroxyphenylglycol level is abolished under constant conditions. Arch Gen Psychiatry 45:162–166, 1988

    PubMed  CAS  Google Scholar 

  188. Riddle MA, Leckman JF, Anderson GM : Plasma-free homovanillic acid: Within- and across-day stability in children and adults with Tourette’s syndrome. Life Sci 40:2145–2151, 1987

    PubMed  CAS  Google Scholar 

  189. Davidson M, Giordani AB, Mohs RC, et al : Short term haloperidol administration acutely elevates human plasma homovanillic acid concentration. Arch Gen Psychiatry 44:189–190, 1987

    PubMed  CAS  Google Scholar 

  190. Bunney BS, Walters JR, Roth RH, et al : Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571, 1973

    PubMed  CAS  Google Scholar 

  191. Bowers MB : 5-hydroxyindoleacetic acid in the brain and cerebrospinal fluid of the rabbit following administration of drugs affecting 5-hydroxytryptamine. J Neurochem 17:827–828, 1970

    PubMed  CAS  Google Scholar 

  192. Eccleston D, Ashcroft GW, Crawford TB, et al : Effect of tryptophan administration on 5-HIAA in cerebrospinal fluid in man. J Neurol Neurosurg Psychiatry 33:269–272, 1970

    PubMed  CAS  Google Scholar 

  193. Eccleston D, Ashcroft GW, Moir ATB, et al : A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid. J Neurochem 15:947–957, 1968

    PubMed  CAS  Google Scholar 

  194. Modigh K : The relationship between the concentration of tryptophan and 5-hydroxy-indoleacetic acid in rat brain and cerebrospinal fluid. J Neurochem 25:351–352, 1975

    PubMed  CAS  Google Scholar 

  195. Anderson GM, Feibel FC, Cohen DJ : Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultrafiltrate. Life Sci 40:1063–1070, 1987

    PubMed  CAS  Google Scholar 

  196. Leckman JF, Maas JW : Preliminary characterization of plasma MHPG in man, in Maas JW (ed): MHPG: Basic Mechanisms and Psychopathology. Orlando, Florida, Academic, 1983, pp 107–128

    Google Scholar 

  197. Crawley JN, Hattox SE, Maas JW, et al : 3-Methoxy-4-hydroxyphenethyleneglycol increase in plasma after stimulation of the nucleus locus coeruleus. Brain Res 141:380–384, 1978

    PubMed  CAS  Google Scholar 

  198. Elsworth JD, Redmond DE, Roth RH : Plasma and cerebrospinal fluid 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) as indices of brain norepinephrine metabolism in primates. Brain Res 235:115–124, 1982

    PubMed  CAS  Google Scholar 

  199. Jimmerson DC, Ballenger JC, Lake RM, et al : Plasma and CSF MHPG in normals. Psychopharmacol Bull 17:86–87, 1981

    Google Scholar 

  200. Davis KL, Hollister LE, Mathe AA, et al : Neuroendocrine and neurochemical measurements in depression. Am J Psychiatry 138:1555–1562, 1981

    PubMed  CAS  Google Scholar 

  201. Maas JW, Kocsis, JH, Bowden CL, et al : Pre-treatment neurotransmitter metabolites and response to imipramine or amitriptyline treatment. Psychol Med 12:37–43, 1982

    PubMed  CAS  Google Scholar 

  202. Leckman JF, Maas JW, Redmond DE Jr, et al : Effects of oral clonidine on plasma 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) in man: preliminary report. Life Sci 26:2179–2185, 1980

    PubMed  CAS  Google Scholar 

  203. Riddle MA, Leckman JF, Anderson GM, et al : Plasma MHPG: Within- and across-day stability in children and adults with Tourette’s syndrome. Biol Psychiatry 24:391–398, 1988.

    PubMed  CAS  Google Scholar 

  204. Pitts FN, McClure JN : Lactate metabolism in anxiety neurosis. N Engl J Med 227:1329–1336, 1967

    Google Scholar 

  205. Banki CM, Arato M : Amine metabolites and neuroendocrine responses related to depression and suicide. J Affective Disord 5:223–232, 1983

    CAS  Google Scholar 

  206. Heninger GR, Chamey DS, Sternberg DE : Serotonergic dysfunction in depression. Prolactin response to intravenous tryptophan in depressed patients and healthy subjects. Arch Gen Psychiatry 41:398–402, 1984

    PubMed  CAS  Google Scholar 

  207. Zohar J, Mueller EA, Insel TR, et al : Serotonergic responsivity in obsessive-compulsive disorder. Comparison of patients and healthy controls. Arch Gen Psychiatry 44:946–951, 1987

    PubMed  CAS  Google Scholar 

  208. Chamey DS, Goodman WK, Price LH, et al : Serotonin function in obsessive-compulsive disorder. Arch Gen Psychiatry 45:177–185, 1988

    Google Scholar 

  209. Hunt RD, Cohen DJ, Shaywitz SE, et al : Strategies for study of the neurochemistry of attention deficit disorder in children. Schizophr Bull 8:236–52, 1982

    PubMed  CAS  Google Scholar 

  210. Puig-Antich J : Affective disorders in children and adolescents: Diagnostic validity and psychobiology, in Meltzer HY (ed): Psychopharmacology: The Third Generation of Progress. New York, Raven, 1987, pp 843–859

    Google Scholar 

  211. Feinstein AR : Clinical Epidemiology. The architecture of clinical research. Philadelphia, WB Saunders, 1985, pp 191–311

    Google Scholar 

  212. Sedvall G, Farde L, Persson A, et al : Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43:995–1005, 1986

    PubMed  CAS  Google Scholar 

  213. Bice AN, Wagner HN, Frost JJ, et al : Simplified detection system for neuroreceptor studies in the human brain. J Nucl Med 27:184–191, 1986

    PubMed  CAS  Google Scholar 

  214. Jeffries KJ, Tamminga CA, Wong DF, et al : Validation of a positron emission probe for neuroreceptor studies in human brain. Soc Neurosci Abs 14:105, 1988

    Google Scholar 

  215. Gadian DG : Nuclear Magnetic Resonance and Its Application to Living Systems. New York, Oxford University Press, 1982

    Google Scholar 

  216. Kuhar MJ, DeSouza EF, Unnerstall JR : Neurotransmitter receptor mapping by autoradiography and other methods. Ann Rev Neurosci 9:27–59, 1986

    PubMed  CAS  Google Scholar 

  217. Goldman-Rakic PS : Modular organization of prefrontal cortex. Trends Neurosci 7:419–424, 1984

    Google Scholar 

  218. Whitehouse PJ, Lynch D, Kuhar MJ : Effects of postmortem delay and temperature on neurotransmitter receptor binding in a rat model of the human autopsy process. J Neurochem 43:553–559, 1984

    PubMed  CAS  Google Scholar 

  219. Graybiel AM, Hirsch EC, Agid YA : Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc Natl Acad Sci USA 84:303–307, 1987

    PubMed  CAS  Google Scholar 

  220. Uhl GR (ed): In Situ Hybridization in Brain. New York, Plenum, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Publishing Corporation

About this chapter

Cite this chapter

Rasmusson, A.M., Riddle, M.A., Leckman, J.F., Anderson, G.M., Cohen, D.J. (1990). Neurotransmitter Assessment in Neuropsychiatric Disorders of Childhood. In: Deutsch, S.I., Weizman, A., Weizman, R. (eds) Application of Basic Neuroscience to Child Psychiatry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0525-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0525-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7849-8

  • Online ISBN: 978-1-4613-0525-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics