Quantitative and Qualitative Adaptations in Gastrointestinal Mucin with Dietary Fiber Feeding

  • Marie M. Cassidy
  • Subramaniam Satchithanandam
  • Richard J. Calvert
  • George V. Vahouny
  • Anthony R. Leeds


The viscous multicomponent mucin gel that coats the epithelial lining of the gastrointestinal tract is a heretofore neglected component of this organ system. The unique structural and functional characteristics of this biological material enable it to act as a protective physiological barrier to potentially deleterious agents. In addition, it may function to limit access to the intestinal surface and consequently limit absorption of nutrients.


Dietary Fiber Goblet Cell Wheat Bran Unstirred Water Layer Label Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, G., Leblond, C. P., and Haddad, A., 1974, Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by autoradiography after labeled fucose injection into rats, J. Cell Biol 60:258–284.CrossRefGoogle Scholar
  2. Calvert, R. J., Klurfeld, D. M., Subramaniam, S., Vahouny, G. V., and Kritchevsky, D., 1987, Reduction of colonic carcinogenesis by wheat bran independent of fecal bile acid concentration, J. Natl. Cancer Inst 79:875–880.Google Scholar
  3. Cassidy, M. M., Lightfoot, F. G., and Vahouny, G. V., 1981, Structural-functional modulation of mucin secretory patterns in the gastrointestinal tract, in: Membrane Biophysics. Structure and Function in Epithelia (M. Dinno and A. Callahan, eds.), Alan R. Liss, New York, pp. 97–127.Google Scholar
  4. Colony, P. C., 1983, Qualitative changes in glycoprotein staining characteristics in the rat colonic mucosa during development, Gastroenterology 84:1129.Google Scholar
  5. Filipe, M. I., and Branfoot, A. C., 1976, Mucin histochemistry of the colon, Curr. Top. Pathol 63: 143–178.Google Scholar
  6. Greaves, P., Filipe, M. I., Abbas, S., and Ormerod, M., 1984, Sialomucins and carcinoembryonic antigen in the evolution of colorectal cancer, Histopathology 8:825–834.CrossRefGoogle Scholar
  7. Irwin, D., O’Looney, P. A., Quinet, E., and Vahouny, G. V., 1984, Application of SDS gradient polyacrilamide slab gel electrophoresis to analysis of apolipoprotein mass and radioactivity of rat lipoproteins, Atherosclerosis 53:163–172.CrossRefGoogle Scholar
  8. Johnson, I. T., and Gee, J. M., 1981, Effect of gel-forming gums on the intestinal unstirred water layer and sugar transport in vitro, Gut 22:398–403.CrossRefGoogle Scholar
  9. Keress, S., Allen, A., and Garner, A., 1982, A simple method for measuring thickness of mucus gel layer adherent to rat, frog, and human gastric mucosa: Influence of feeding prostaglandins, N- acetylcysteine and other agents, Clin. Sci 63:187–195.Google Scholar
  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R., 1951, Protein measurement with the Folin phenol reagent, J. Biol Chem 193:265–275.Google Scholar
  11. Lukie, B. E., and Forstner, G. G., 1972, Synthesis of intestinal glycoproteins: Inhibition of [14C]glucosamine incorporation by sodium salicylate in vitro, Biochim. Biophys. Acta 833:34–43.Google Scholar
  12. Mantle, M., and Allen, A., 1978, A colorimetric assay for glycoprotein based on the periodic acid/Schiff’s stain, Biochem. Soc. Trans 6:607–609.Google Scholar
  13. Mayer, R. M., Treadwell, C. R., Gallo, L. L., and Vahouny, G. V., 1985, Intestinal mucins and cholesterol uptake in vitro, Biochim. Biophys. Acta 833:34–43.Google Scholar
  14. Neutra, M. R., and Forstner, J. F., 1987, Gastrointestinal mucus: Synthesis, secretion and function, in: Physiology of the Gastrointestinal Tract, 2nd ed. (L. R. Johnson, ed.), Raven Press, New York, pp. 975–1010.Google Scholar
  15. Ofosu, F., Forstner, J., and Forstner, G., 1978, Mucin degradation in the intestine, Biochim. Biophys. Acta 543:476–483.Google Scholar
  16. Ouchterlony, O., 1958, Diffusion-in-gel methods for immunological analysis, Prog. Allergy 5:1–78.Google Scholar
  17. Pilch, S. M. (ed.), 1987, Physiological Effects and Health Consequences of Dietary Fiber, Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda, MD, pp. 129–134.Google Scholar
  18. Reid, P. E., Dunn, W. L., Ramey, C. W., Coret, E., Trueman, L., and Clay, M. G., 1984a, Histochemical studies of the mechanism of the periodic acid-phenylhydrazine-Schiff (PAPS) procedure, Histochem. J 16:641–649.CrossRefGoogle Scholar
  19. Reid, P. E., Culling, C. F. A., Dunn, W. L., and Clay, M. G., 1984b, Chemical and histochemical studies of normal and diseased gastrintestinal tract I. A comparison between histologically normal colon, colonic tumors, ulcerative colitis, and diverticular disease of the colon, Histochem. J 16: 235–251.CrossRefGoogle Scholar
  20. Sarosiek, J., Slomiany, A., Takagi, A., and Slomiany, B. L., 1984, Hydrogen ion diffusion in dog gastric mucus glycoprotein: Effect of associated lipids and covalently bound fatty acids, Biochem. Biophys. Res. Commun 118:523–531.CrossRefGoogle Scholar
  21. Schneeman, B. O., 1982, Pancreatic and digestive function, in: Dietary Fiber in Health and Disease (G. V. Vahouny and D. Kritchevsky, eds.), Plenum Press, New York, pp. 73–83.Google Scholar
  22. Sigleo, S., Jackson, M. J., and Vahouny, G. V., 1984, Effects of dietary fiber constituents on intestinal morphology and nutrient transport, Am. J. Physiol 246:G34-G39.Google Scholar
  23. Spicer, S. S., 1965, Diamine methods for differentiating mucosubstances histochemically, J. Histochem. Cytochem 13:211–234.CrossRefGoogle Scholar
  24. Teerlink, T., Van der Krift, T. P., Van Heusden, P. H., and Wirtz, K. W., 1984, Determination of nonspecific lipid transfer protein in rat tissues and Morris hepatomas by enzyme immunoassay, Biochim. Biophys. Acta 793:251–259.Google Scholar
  25. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrilamide gel to nitrocellulose sheets. Procedure and some applications, Proc. Natl. Acad. Sci. U.S.A 76:4350–4354.CrossRefGoogle Scholar
  26. Vahouny, G. V., Le, T., Ifrim, I., Satchithanandam, S., and Cassidy, M. M., 1985, Stimulation of intestinal cytokinetics and mucin turnover in rats fed wheat bran or cellulose, Am. J. Clin. Nutr 41: 895–900.Google Scholar
  27. Vahouny, G. V., Adamson, I., Asskaryar, F. A., Chanderbhan, R., Satchithanandam, S., and Cassidy, M. M., 1986, Interaction of dietary fiber with the intestinal mucosa in rats, Nutr. Rep. Int 34:985–993.Google Scholar
  28. Vahouny, G. V., Satchithanandam, S., Chen, I., Tepper, S. A., Kritchevsky, D., Lightfoot, F. G., and Cassidy, M. M., 1988, Dietary fiber and intestinal adaptation: Effects on lipid absorption and lymphatic transport in the rat, Am. J. Clin. Nutr 47:201–206.Google Scholar
  29. Vaitukaitis, J., Robbins, J. B., Nieschlag, E., and Ross, G. T., 1971, A method for producing specific antisera with small doses of immunogen, J. Clin. Endocrinol 33:988–991.CrossRefGoogle Scholar
  30. Weimer, H. E., and Moshin, J. R., 1953, Serum glycoprotein concentrations in experimental tuberculosis in guinea pigs, Am. Rev. Tuberc 68:594–602.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marie M. Cassidy
    • 1
  • Subramaniam Satchithanandam
    • 1
  • Richard J. Calvert
    • 2
  • George V. Vahouny
    • 1
  • Anthony R. Leeds
    • 3
  1. 1.Departments of Physiology and BiochemistryThe George Washington University Medical CenterWashingtonUSA
  2. 2.The U.S. Food and Drug AdministrationWashingtonUSA
  3. 3.King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations