Skip to main content

The Chemical Structure of the Cell Walls of Higher Plants

  • Chapter
Dietary Fiber

Abstract

Without question, the fundamental chemistry of dietary fiber resides in the chemical structure of plant cell walls. These complicated networks of polysaccharide, structural protein, and phenolic substances are the basis of cell shape and integrity in plants and the slowly digested components that make up now-recognized important dietary supplements. Although the original definition of dietary fiber has been modified to include “soluble” as well as “insoluble” fibers, the recent advances in analysis of polysaccharide structure and survey of a wider range of higher plants have demonstrated that their chemistry is more complex than once imagined. Flowering plants alone comprise a broad range of orders that are grouped into two major evolutionary classes, the Dicotyledonae and Monocotyledonae (Fig. 1). In the Monocotyledonae, the order Graminales contains the cereal grasses that constitute the major foodstuffs of the world. In grasses, the primary cell walls are vastly different from all of the Dicotyledonae and other Monocotyledonae studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AGP:

arabinogalactan-protein

HS-GAX:

highly substituted glucuronarabinoxylan

GAX:

glucuronoarabinoxylan

PGA:

polygalacturonic acid

RG:

rhamnogalacturonan

References

  • Anderson, R. L., and Ray, P. M., 1978, Labeling of the plasma membrane of pea cells by a surface localized glucan synthetase, Plant Physiol. 61: 723–730.

    Article  CAS  Google Scholar 

  • Aspinall, G. O., Molloy, J. A., and Craig, J. W. T., 1969, Extracellular polysaccharides from suspension-cultured sycamore cells, Can. J. Biochem. 47: 1063–1070.

    Article  CAS  Google Scholar 

  • Bacic, A., Harris, P. J., and Stone, B. A., 1988, Structure and function of plant cell walls, in: The Biochemistry of Plants, Vol. 14 (J. Preiss, ed.), Academic Press, New York, pp. 297–371.

    Google Scholar 

  • Baron-Epel, O., Gharyl, P. K., and Schindler, M., 1988, Pectins as mediators of wall porosity in soybean cells, Planta 175:389–395.

    Article  CAS  Google Scholar 

  • Benson, L., 1979, Plant Classification, 2nd ed., D. C. Heath, Lexington, MA.

    Google Scholar 

  • Buliga, G. S., Brandt, D. A., and Fincher, G. B., 1986, Sequence statistics and solution conformation of a barley (l→3),(l→4)-β-D-glucan, Carbohydr. Res. 157: 139–159.

    Article  CAS  Google Scholar 

  • Carpita, N. C., 1983a, Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali, Phytochemistry 23: 1089–1093.

    Article  Google Scholar 

  • Carpita, N. C., 1983b, Hemicellulosic polymers of cell walls of Zea coleoptiles, Plant Physiol. 72: 515–521.

    Article  CAS  Google Scholar 

  • Carpita, N. C., 1984, Cell wall development in maize coleoptiles, Plant Physiol 76: 205–212.

    Article  CAS  Google Scholar 

  • Carpita, N. C., 1986, Incorporation of proline and aromatic amino acids into cell walls of maize coleoptiles, Plant Physiol. 80: 660–666.

    Article  CAS  Google Scholar 

  • Carpita, N. C., 1987, The biochemistry of “growing” cell walls, in: Physiology of Cell Expansion during Plant Growth (D. J. Cosgrove and D. P. Knievel, eds.), American Society of Plant Physiology, Rockville, MD., pp. 28–45.

    Google Scholar 

  • Carpita, N. C., 1988, Pectic polysaccharides of maize coleoptiles and proso millet cells in liquid culture, Phytochemistry 28: 121–125.

    Article  Google Scholar 

  • Carpita, N. C., and Kanabus, J., 1989, Chemical structure of the cell walls of dwarf maize and changes mediated by gibberellin, Plant Physiol. 88: 671–678.

    Article  Google Scholar 

  • Carpita, N. C., and Whittern, D., 1986, A highly-substituted glucuronoarabinoxylan from developing maize coleoptiles, Carbohydr. Res. 146: 129–140.

    Article  CAS  Google Scholar 

  • Carpita, N. C., Mulligan, J. A., and Heyser, J. W., 1985, Hemicelluloses of a proso millet cell suspension culture, Plant Physiol. 79: 480–484.

    Article  CAS  Google Scholar 

  • Cooper, J. B., Chen, J. A., van Hoist, G.-J., and Varner, J. E., 1987, Hydroxyproline-rich glycoproteins of plant cell walls, Trends Biochem. Sci. 12: 24–27.

    Article  CAS  Google Scholar 

  • Darvill, J. E., McNeil, M., Darvill, A. G., and Albersheim, P., 1980, The structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells, Plant Physiol. 66: 1135–1139.

    Article  CAS  Google Scholar 

  • Delmer, D. P., 1987, Cellulose biosynthesis, Annu. Rev. Plant Physiol 38: 259–290.

    Article  CAS  Google Scholar 

  • Delmer, D. P., and Stone, B. A., 1988, Biosynthesis of plant cell walls, in: The Biochemistry of Plants (J. Preiss, ed.), Academic Press, Orlando, FL, pp. 373–420.

    Google Scholar 

  • Fincher, G. B., and Stone, B. A., 1981, Metabolism of noncellulosic polysaccharides, in: Plant Carbohydrates II. Encyclopedia of Plant Physiology, New Series, Vol. 13B (W. Tanner and F. A. Loewus, eds.), Springer-Verlag, Berlin, pp. 68–132.

    Google Scholar 

  • Fincher, G. B., Stone, B. A., and Clarke, A. E., 1983, Arabinogalactan-proteins: Structure, biosynthesis, and function, Annu. Rev. Plant Physiol. 34:47–70.

    Article  CAS  Google Scholar 

  • Fry, S. C., 1982, Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein, Biochem. J. 204: 449–455.

    CAS  Google Scholar 

  • Fry, S. C., 1986a, Cross-linking of matrix polymers in the growing cell walls of angiosperms, Annu. Rev. Plant Physiol. 37: 165–186.

    Article  CAS  Google Scholar 

  • Fry, S. C., 1986b, In-vivo formation of xyloglucan nonasaccharide: A possible biologically active cellwall fragment, Planta 169: 443–453.

    Article  CAS  Google Scholar 

  • Giddings, T. H., Jr., Brower, D. L., and Staehelin, L. A., 1980, Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary walls, J. Cell Biol. 84: 327–339.

    Article  Google Scholar 

  • Grisebach, H., 1981, Lignins, in: The Biochemistry of Plants, Vol. 7 (P. K. Stumpf and E. E. Conn, eds.), Academic Press, New York, pp. 457–478.

    Google Scholar 

  • Gross, K. C., 1984, Fractionation and partial characterization of cell walls from normal and non-ripening mutant tomato fruit, Physiol. Plant. 62: 25–32.

    Article  CAS  Google Scholar 

  • Hatfield, R., and Nevins, D. J., 1986, Purification and properties of an endoglucanase isolated from the cell walls of Zea mays seedlings, Carbohydr. Res. 148: 265–278.

    Article  CAS  Google Scholar 

  • Hatfield, R., and Nevins, D. J., 1987, Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls, Plant Physiol. 83: 203–207.

    Article  CAS  Google Scholar 

  • Hayashi, T., Marsden, M. P. F., and Delmer, D. P., 1987, Pea xyloglucan and cellulose. V. Xyloglucan-cellulose interactions in vitro and in vivo, Plant Physiol. 83: 384–389.

    Article  CAS  Google Scholar 

  • Higuchi, T., Ito, Y., and Kawamura, I., 1967, p-Hydroxyphenylpropane component of grass lignin and role of tyrosine-ammonia lyase in its formation, Phytochemistry 6: 875–881.

    Article  CAS  Google Scholar 

  • Hood, E. E., Shen, Q. X., and Varner, J. E., 1988, A developmentally regulated hydroxyproline-rich glycoprotein in maize pericarp cell walls, Plant Physiol. 87: 138–142.

    Article  CAS  Google Scholar 

  • Huber, D. J., and Nevins, D. J., 1981, Partial purification of endo- and exo-β-D-glucanase enzymes from Zea mays L. seedlings and their involvement in cell wall autohydrolysis, Planta 151: 206–214.

    Article  CAS  Google Scholar 

  • Jarvis, M. C., 1984, Structure and properties of pectin gels in plant cell walls, Plant Cell Environ. 7: 153–164.

    CAS  Google Scholar 

  • Kato, Y., and Nevins, D. J., 1984, Enzymic dissociation of Zea shoot cell wall polysaccharides. II. Dissociation of (1→3),(1→4)-β-D-glucan by purified (1→3),(1→4)-β-D-glucan 4-glucanohydrolase from Bacillus subtilis, Plant Physiol. 75: 745–752.

    Article  CAS  Google Scholar 

  • Kato, Y., and Nevins, D. J., 1986, Fine structure of (1→3),(1→4)-β-D-glucan from Zea shoot walls, Carbohydr. Res. 147: 69–85.

    Article  CAS  Google Scholar 

  • Kauss, H., and Hassid, W. Z., 1967, Enzymic introduction of the methyl ester groups of pectin, J. Biol. Chem. 242: 3449–3453.

    CAS  Google Scholar 

  • Keegstra, K., Talmadge, K. W., Bauer, W. D., and Albersheim, P., 1973, The structure of plant cell walls, III. A model of the walls of suspension-cultured sycamore cells based on the interactions of the macromolecular components, Plant Physiol. 51: 188–196.

    Article  CAS  Google Scholar 

  • Kieliszewski, M., and Lamport, D. T. A., 1987, Purification and partial characterization of a hydroxyproline-rich glycoprotein in a graminaceous monocot, Zea mays, Plant Physiol. 85: 823.

    Article  CAS  Google Scholar 

  • Lamport, D. T. A., 1986, The primary cell wall: A new model, in: Cellulose: Structure, Modification and Hydrolysis (R. A. Yound and R. M. Rowell, eds.), John Wiley & Sons, New York, pp. 77–90.

    Google Scholar 

  • Lau, J. M., McNeil, M., Darvill, A. G., and Albersheim, P., 1985, Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants, Carbohydr. Res. 137: 111–125.

    Article  CAS  Google Scholar 

  • Luttenegger, D. G., and Nevins, D. J., 1985, Transient nature of a (1→3),(1→4)-β-D-glucan in Zea mays coleoptile walls, Plant Physiol. 77: 175–178.

    Article  CAS  Google Scholar 

  • Maltby, D., Carpita, N. C., Montezinos, D., Kulow, C., and Delmer, D. P., 1979, β-l,3-Glucan in developing cotton fibers. Structure, localization, and relationship of synthesis to that of secondary wall cellulose, Plant Physiol. 63: 1158–1164.

    Article  CAS  Google Scholar 

  • Markwalder, H.-V., and Neukom, H., 1976, Diferulic acid as a possible crosslink in hemicelluloses of wheat germ, Phytochemistry 15: 836–837.

    Article  CAS  Google Scholar 

  • McDougall, G. J., and Fry, S. C., 1988, Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan, Planta 175: 412–416.

    Article  CAS  Google Scholar 

  • Meinert, M. C., and Delmer, D. P., 1977, Changes in biochemical composition of the cell wall of the cotton fiber during development, Plant Physiol. 59: 1088–1097.

    Article  CAS  Google Scholar 

  • Moustacas, A.-M., Nari, J., Diamantidis, G., Noat, G., Crasnier, M., Borel, M., and Ricard, J., 1986, Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 2. The role of pectin methylesterase in the modulation of electrostatic effects in soybean cell walls, Eur. J. Biochem. 155: 191–197.

    Article  CAS  Google Scholar 

  • Mundy, J., Brandt, A., and Fincher, G. B., 1985, Messenger RNAs from the scutellum and aleurone of germinating barley encode (1→3,1→4)β-glucanase, α-amylase, and carboxypeptidase, Plant Physiol. 79: 867–871.

    Article  CAS  Google Scholar 

  • Nakajima, N., Morikawa, H., Igarashi, S., and Senda, M., 1981, Differential effect of calcium and magnesium on mechanical properties of pea stem cell walls, Plant Cell Physiol. 22: 1305–1315.

    CAS  Google Scholar 

  • Rees, D. A., 1977, Polysaccharide Shapes, Chapman and Hall, London.

    Google Scholar 

  • Sadava, D., and Chrispeels, M. J., 1973, Hydroxyproline-rich cell wall protein extensin role in the cessation of elongation in excised pea epicotyls, Dev. Biol. 30: 49–55.

    Article  CAS  Google Scholar 

  • Scalbert, A., Monties, B., Lallemand, J.-Y., Guttet, E., and Rolando, C., 1985, Ether linkage between phenolic acids and lignin fractions from wheat straw, Phytochemistry 24: 1359–1362.

    Article  CAS  Google Scholar 

  • Shea, E. M., Gibeaut, D. M., and Carpita, N. C., 1989, Structural analysis of the cell walls regenerated by carrot protoplasts, Planta 179: 293–308.

    Article  CAS  Google Scholar 

  • Shibuya, N., and Nakane, R., 1984, Pectic polysaccharides of rice endosperm walls, Phytochemistry 23: 1425–1429.

    Article  CAS  Google Scholar 

  • Stafstrom, J. P., and Staehelin, L. A., 1986, Cross-linking patterns in salt-extractable extensin from carrot cell walls, Plant Physiol. 81: 234–241.

    Article  CAS  Google Scholar 

  • Staudte, R. G., Woodward, J. R., Fincher, G. B., and Stone, B. A., 1983, Water-soluble (l→3),(1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. III. Distribution of cellotriosyl and cellotetraosyl residues, Carbohydr. Polym. 3: 299–312.

    Article  CAS  Google Scholar 

  • Stevenson, T. T., McNeil, M., Darvill, A. G., and Albersheim, P., 1986, Structure of plant cell walls. XVIII. An analysis of the extracellular polysaccharides of suspension-cultured sycamore cells, Plant Physiol. 80: 1012–1019.

    Article  CAS  Google Scholar 

  • Stuart, I. M., Loi, L., and Fincher, G. B., 1986, Development of (l→3,l→4)-β-D-glucan endohydrolase isoenzymes in isolated scutella and aleurone layers of barley (Hordeum vulgare), Plant Physiol. 80: 310–314.

    Article  CAS  Google Scholar 

  • van Hoist, G.-J., and Varner, J. E., 1984, Reinforced polyproline II conformation in a hydroxyprolinerich cell wall glycoprotein from carrot root, Plant Physiol. 74: 247–251.

    Article  Google Scholar 

  • Wada, S., and Ray, P. M., 1978, Matrix polysaccharides of oat coleoptile cell walls, Phytochemistry 17: 923–931.

    Article  CAS  Google Scholar 

  • Woodward, J. R., Phillips, D. R., and Fincher, G. B., 1983, Water-soluble (l→3),(l→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties, Carbohydr. Polym. 3: 143–156.

    Article  CAS  Google Scholar 

  • York, W. S., Darvill, A. G., and Albersheim, P., 1984, Inhibition of 2,4-dichlorophenoxyacetic acidstimulated elongation of pea stem segments by a xyloglucan oligosaccharide, Plant Physiol. 75: 295–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Carpita, N.C. (1990). The Chemical Structure of the Cell Walls of Higher Plants. In: Kritchevsky, D., Bonfield, C., Anderson, J.W. (eds) Dietary Fiber. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0519-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0519-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7846-7

  • Online ISBN: 978-1-4613-0519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics