Skip to main content

The Influence of Dietary Fiber on Microbial Enzyme Activity in the Gut

  • Chapter
Dietary Fiber

Abstract

The mammalian gut microflora is a highly complex community of microorganisms that exhibits a large degree of species diversity. This diversity, coupled with the cumbersome procedures necessary to identify the predominant (anaerobic) components of the flora (Holdeman and Moore, 1975), makes the analysis and characterization of the flora by conventional microbiological methods extremely difficult and time consuming. Thus, studies of dietary modification of the flora need to be based on simpler, quicker methods. Measurement of microbial enzyme activities in suspensions of gut luminal contents or feces provides such a method and has been used to assess the influence of diet (Goldin and Gorbach, 1976; Rowland et al., 1985), exogenous microorganisms (Goldin et al, 1980), and disease (Mastromarino et al., 1976) on the gut microflora. By choosing enzymes that are known to participate in the detoxification of foreign compounds or in their activation to toxic, mutagenic, or carcinogenic metabolites, it is possible to gain insight into the likely consequences for the health of the host animal of the changes induced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beinenstock, J., 1979, The physiology of the local immune response, in: Immunology of the Gastrointestinal Tract (P. Asquith, ed.), Churchill Livingstone, London, pp. 1–13.

    Google Scholar 

  • Brown, J. P., and Dietrich, P. S., 1979, Mutagenicity of plant flavonols in the Salmonella/microsome test: Activation of flavonol glycosides by mixed glycosidases from rat cecal bacteria and other sources, Mutat. Res 66: 223–240.

    Article  CAS  Google Scholar 

  • Coates, M. E., Drasar, B. S., Mallett, A. K., and Rowland, I. R., 1988, Methodological considerations for the study of bacterial metabolism, in: Role of the Gut Flora in Toxicity and Cancer (I. R. Rowland, ed.), Academic Press, London, pp. 1–21.

    Google Scholar 

  • Conning, D. M., Mallett, A. K., and Nicklin, S., 1984, Novel toxicological aspects of gums and stabilisers, in: Gums and Stabilisers for the Food Industry, Vol. 2 (G. O. Phillips, D. J. Wedlock, and P. A. Williams, eds.), Pergamon Press, Oxford, pp. 389–404.

    Google Scholar 

  • Cummings, J. H., 1982, Consequences of the metabolism of fiber in the human large intestine, in: Dietary Fiber in Health and Disease (G. V. Vahouny and D. Kritchevsky, eds.), Plenum Press, New York, pp. 9–22.

    Google Scholar 

  • Cummings, J. H., Stephen, A. M., and Branch, W. J., 1981, Implications of dietary fiber breakdown in the human colon, in: Banbury Report 7—Gastrointestinal Cancer: Endogenous Factors (W. R. Bruce, P. Correa, M. Lipkin, S. R. Tannenbaum, and T. D. Wilkins, eds.), Cold Spring Harbor Laboratory, New York, pp. 71–81.

    Google Scholar 

  • Cummings, J. H., Englyst, H. N., and Wiggins, H. S., 1986, The role of carbohydrates in lower gut function, Nutr. Rev 44: 50–54.

    Article  CAS  Google Scholar 

  • DeBethizy, J. D., Sherril, J. M., Rickert, D. E., and Hamm, T. E., 1983, Effects of pectin-containing diets on hepatic macromolecular covalent bonding of 2,6-dinitro-(H3)toluene in Fischer 344 rats, Toxicol Appl. Pharmacol 69: 369–376.

    Article  CAS  Google Scholar 

  • Drasar, B. S., 1988, The bacterial flora of the intestine, in: Role of the Gut Flora in Toxicity and Cancer (I. R. Rowland, ed.), Academic Press, London, pp. 23–38.

    Google Scholar 

  • Frawley, J. P., Wiebe, A. K., and Klug, E. D., 1964, Studies on the gastro-intestinal absorption of purified sodium carboxymethylcellulose, Food Cosmet. Toxicol 2: 539–543.

    Article  CAS  Google Scholar 

  • Glicksman, M., 1969, Gum Technology in the Food Industry, Academic Press, New York.

    Google Scholar 

  • Goldin, B. R., and Gorbach, S. L., 1976, The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer, J. Natl. Cancer Inst 57: 371–375.

    CAS  Google Scholar 

  • Goldin, B. R., Swenson, L., Dwyer, J., Sexton, M., and Gorbach, S. L., 1980, Effect of diet and Lactobacillus supplements on human fecal bacterial enzymes, J. Natl. Cancer Inst 64: 255–262.

    CAS  Google Scholar 

  • Goldman, P., 1982, Role of the intestinal microflora, in: Metabolic Basis of Detoxication (W. B. Jakoby, J. R. Bend, and J. Caldwell, eds.), Academic Press, New York, pp. 323–337.

    Google Scholar 

  • Hassan, M., and Hall, J. B., 1975, The physiological function of nitrate reduction in Clostridium perfringens, J. Gen. Microbiol 87: 120–128.

    Google Scholar 

  • Hawkins, W. W., and Yaphe, W., 1965, Carrageenan as a dietary constituent for the rat: Faecal excretion, nitrogen absorption, and growth, Can. J. Biochem 43: 479–485.

    CAS  Google Scholar 

  • Hill, H. Z., Backer, R., and Hill, G. J., 1980, Blood cyanide levels in mice after administration of amygdalin, Biopharmaceut. Drug Dispos 1: 211–220.

    Article  CAS  Google Scholar 

  • Holdeman, L. V., and Moore, W. E. C., 1975, Anaerobe Laboratory Manual, 3rd ed., VPI Laboratory, Blacksburg, VA.

    Google Scholar 

  • Jacobs, L. R., and Lupton, J. R., 1986, Relationship between colonic luminal pH, cell proliferation, and colon carcinogenesis in 1,2-dimethylhydrazine treated rats fed high fiber diets, Cancer Res 46: 1727–1734.

    CAS  Google Scholar 

  • Laqueur, G. L., and Spatz, M., 1968, Toxicology of cycasin, Cancer Res 28: 2262–2267.

    CAS  Google Scholar 

  • Leegwater, D. E., De Groot, A. P., and Van Kalmthout-Kuyper, M., 1974, The aetiology of caecal enlargement in the rat, Food Cosmet. Toxicol 12: 687–697.

    Article  CAS  Google Scholar 

  • Mallett, A. K., 1982, Effect of dietary pectin on the metabolic activity of the rat hind gut microflora, Chem. Ind 984–987.

    Google Scholar 

  • Mallett, A. K., Wise, A., and Rowland, I. R., 1983, Effect of dietary cellulose on the metabolic activity of the rat caecal microflora, Arch. Toxicol 52: 311–317.

    Article  CAS  Google Scholar 

  • Mallett, A. K., Wise, A., and Rowland, I. R., 1984, Hydrocolloid food additives and rat caecal microbial enzyme activities, Food Chem. Toxicol 22: 415–418.

    Article  CAS  Google Scholar 

  • Mallett, A. K., Rowland, I. R., Bearne, C. A., and Nicklin, S., 1985, Influence of dietary carrageenans on microbial biotransformation activities in the cecum of rodents and on gastrointestinal immune status in the rat, Toxicol. Appl. Pharmacol 78: 377–385.

    Article  CAS  Google Scholar 

  • Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B., and Fuller, R., 1987, The use of rats associated with human faecal flora as a model for studying the effects of diet on the human gut microflora, J. Appl. Bacteriol 62: 39–46.

    Google Scholar 

  • Mallett, A. K., Rowland, I. R., Bearne, C. A., Flynn, J. C., Fehilly, B. J., Udeen, S., and Farthing, M. J. G., 1988, Effects of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human faecal flora, Microbiol. Ecol. Health Dis 1: 23–29.

    Article  Google Scholar 

  • Mastromarino, A. J., Reddy, B. S., and Wynder, E. L., 1976, Metabolic epidemiology of colon cancer: Enzymic activity of fecal microflora, Am. J. Clin. Nutr 29: 1455–1460.

    CAS  Google Scholar 

  • McCarthy, R. E., and Salyers, A. A., 1988, The effects of dietary fibre utilization on the colonic microflora, in: Role of the Gut Microflora in Toxicity and Cancer (I. R. Rowland, ed.), Academic Press, London, pp. 295–313.

    Google Scholar 

  • Ota, A., 1982, Phosphorylation coupled to nitrate reduction, Int. J. Biochem 14: 341–346.

    Article  CAS  Google Scholar 

  • Renwick, A. G., and Drasar, B. S., 1976, Environmental carcinogens and large bowel cancer, Nature 263: 654–655.

    Article  Google Scholar 

  • Rowland, I. R., and Walker, R., 1983, The gastro-intestinal tract in food toxicology, in: Toxic Hazards in Food (D. M. Conning and A. Lansdown, eds.), Croom-Helm, London, pp. 183–274.

    Google Scholar 

  • Rowland, I. R., Mallett, A. K., and Wise, A., 1983a, A comparison of the activity of five microbial enzymes from rats, mice, and hamsters, and response to dietary pectin, Toxicol. Appl. Pharmacol 69: 143–148.

    Article  CAS  Google Scholar 

  • Rowland, I. R., Mallett, A. K., Wise, A., and Bailey, E., 1983b, Effect of dietary carrageenan and pectin on the reduction of nitro-compounds by rat caecal microflora, Xenobiotica 13: 251–256.

    Article  CAS  Google Scholar 

  • Rowland, I. R., Mallett, A. K., and Wise, A., 1985, The effect of diet on the mammalian gut flora and its metabolic activities, CRC Crit. Rev. Toxicol 16: 31–103.

    Article  CAS  Google Scholar 

  • Rowland, I. R., Mallett, A. K., Bearne, C. A., and Farthing, M. J. G., 1986, Enzyme activities of the hindgut microflora of laboratory animals and man, Xenobiotica 16: 519–523.

    Article  CAS  Google Scholar 

  • Samelson, S. L., Nelson, R. L., and Nyhus, L. M., 1985, Protective role of faecal pH in experimental colon carcinogenesis, J. R. Soc. Med 78: 230–233.

    CAS  Google Scholar 

  • Shiau, S.-Y., and Chang, G. W., 1983, Effects of dietary fiber on fecal mucinase and β-flucuronidase in rats, J. Nutr 113: 138–144.

    CAS  Google Scholar 

  • Simon, G. L., and Gorbach, S. L., 1987, Intestinal flora and gastrointestinal function, in: Physiology of the Gastrointestinal Tract, 2nd ed. (L. R. Johnson, ed.), Raven Press, New York, pp. 1729–1747.

    Google Scholar 

  • Thornton, J. R., 1981, High colonic pH promotes colorectal cancer, Lancet 1: 1081–1083.

    Article  CAS  Google Scholar 

  • van Dokkum, W., deBoer, B. C. J., van Fassen, A., Pikaar, N. A., and Hermus, R. J. J., 1983, Diet, faecal pH and colorectal cancer, Br. J. Cancer 48: 109–110.

    Article  Google Scholar 

  • Williams, R. T., 1972, Toxicologic implications of biotransformation by intestinal microflora, Toxicol. Appl. Pharmacol 23: 769–781.

    Article  CAS  Google Scholar 

  • Williams, R. T., Millburn, P., and Smith, R. L., 1965, The influence of enterohepatic circulation on toxicity of drugs, Ann. N.Y. Acad. Sci. (U.S.A.) 123: 110–124.

    Article  CAS  Google Scholar 

  • Wise, A., Mallett, A. K., and Rowland, I. R., 1982, Dietary fibre, bacterial metabolism and toxicity of nitrate in the rat, Xenobiotica 12: 111–118.

    Article  CAS  Google Scholar 

  • Wise, A., Mallett, A. K., and Rowland, I. R., 1986, Effect of mixtures of dietary fibers on the enzyme activity of the rat caecal microflora, Toxicology 38: 241–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Rowland, I.R., Mallett, A.K. (1990). The Influence of Dietary Fiber on Microbial Enzyme Activity in the Gut. In: Kritchevsky, D., Bonfield, C., Anderson, J.W. (eds) Dietary Fiber. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0519-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0519-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7846-7

  • Online ISBN: 978-1-4613-0519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics