Skip to main content

Flagellar Surfaces of Parasitic Protozoa and Their Role in Attachment

  • Chapter
Ciliary and Flagellar Membranes

Abstract

Flagella are thought of primarily as propulsive structures but in the lives of certain parasitic protozoa they have another important role as organelles of attachment to host surfaces. There is now good evidence that such attachment is vital to the survival of the parasite, not simply by anchoring it in a preferred environment, but also by ensuring its transmission to another host. Most practical interest attaches to the pathogenic trypanosomes and leishmanias, as transmission of these important causative agents of major diseases in man and his domestic animals in the tropics and subtropics depends upon flagellar attachment in the insect vector. Prevention of such attachment would, in theory, be a means of controlling the spread of disease. Little is known of the mechanisms operating in flagellar attachment, however, or of the relationship of attachment to parasite morphogenesis. The purpose of this review is to draw attention to an important aspect of parasite cell biology which is now ripe for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, C.H., and Brooks, W.M., 1972, Histological observations on larvae of the eye gnat Hippelates pusio (Diptera: Chloropidae), infected with the flagellate Herpetomonas muscarum, J. Invert. Pathol. 19:342–353.

    CAS  Google Scholar 

  • Balber, A.E., and Frommel, T.O., 1988, Trypanosoma brucei gambiense and T.b.rhodesiense: Concanavalin A binding to the membrane and flagellar pocket of bloodstream and procyclic forms, J. Protozool. 35:214–219.

    PubMed  CAS  Google Scholar 

  • Banks, K.L., 1978, Binding of Trypanosoma congolense to the walls of small blood vessels, J. Protozool. 25: 241–245.

    PubMed  CAS  Google Scholar 

  • Banks, K.L., 1979, The in vitro binding of Trypanosoma congolense to erythrocytes, J. Protozool. 26:103–108.

    PubMed  CAS  Google Scholar 

  • Ben Amar, M.F., Pays, A., Tebabi, P., Dero, B., Seebeck, T., Steinert, M., and Pays, E., 1988, Structure and transcription of the actin gene of Trypanosoma brucei, Mol. Cell. Biol. 8:2166–2176.

    PubMed  CAS  Google Scholar 

  • Benchimol, M., and De Souza, W., 1980, Freeze-fracture study of the plasma membrane of Leishmania mexicana amazonensis, J. Parasitol. 66:941–947.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1975, Ultrastructure of the attachment of Pyrsonympha to the hind-gut wall of Reticulitermes tibialis, J. Insect Physiol. 21:391–399.

    Google Scholar 

  • Böker, C.A., and Schaub, G.A.,1984, Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of the vector Triatoma infestans, Z. Parasitenkd. 70:459–469.

    PubMed  Google Scholar 

  • Bonaldo, M.C., Souto Padron, T., De Souza, W., and Goldenberg, S., 1988, Cell-substrate adhesion during Trypanosoma cruzi differentiation, J. Cell Biol. 106:1349–1358.

    PubMed  CAS  Google Scholar 

  • Borysenko, J.Z., and Revel, J.-P., 1973, Experimental manipulation of desmosome structure, J. Anat. 137: 403–422.

    CAS  Google Scholar 

  • Bray, R.S., and Alexander, J., 1987, Leishmania and the macrophage, in: The Leishmaniases in Biology and Medicine, Volume I (W. Peters and R. Killick-Kendrick, eds.), Academic Press, New York, pp. 211–233.

    Google Scholar 

  • Brooker, B.E., 1970, Desmosomes and hemidesmosomes in the flagellate Crithidia fasciculata, Z. Zellforsch. 105:155–166.

    PubMed  CAS  Google Scholar 

  • Brooker, B.E., 1971a, Flagellar adhesion of Crithidia fasciculata to Millipore filters, Protoplasma 72:19–25.

    Google Scholar 

  • Brooker, B.E., 1971b, Flagellar attachment and detachment of Crithidia fasciculata to the gut wall of Anopheles gambiae, Protoplasma 73:191–202.

    PubMed  CAS  Google Scholar 

  • Brooks, A.S., 1978, Ultrastructure of the flagellar attachment site in three species of trypanosomatids, Trans. Am. Microsc. Soc. 97:287–296.

    PubMed  CAS  Google Scholar 

  • Brugerolle, G., 1976, Cytologic ultrastructurale, systematique et Evolution des Trichomonadida, Ann. Stn. Biol. Besse Chandesse 10:1–57.

    Google Scholar 

  • Brugerolle, G., Lom, J., Nohynkova, E., and Joyon, L., 1979, Comparaison et evolution des structures cellulaires chez plusiers especes de bodonides et cryptobiides appartenant aux genres Bodo, Cryptobia, et Trypanoplasma (Kinetoplastida, Mastigophora), Protistologica 15:197–221.

    Google Scholar 

  • Brun, R., 1974, Ultrastructur und Zyklus von Herpetomonas muscarum, “Herpetomonas mirabilis” und Crithidia luciliae in Chrysomyia chloropyga, Acta Trop. 31:219–290.

    Google Scholar 

  • Büngener, W., and Müller, G., 1976, Adhaerenzphänomene bei Trypanosoma congolense, Tropenmed. Parasitol. 27:370–371.

    Google Scholar 

  • Chang, K.P., 1979, Leishmania donovani: Promastigote-macrophage surface interactions in vitro, Exp. Parasitol. 48:175–189.

    PubMed  CAS  Google Scholar 

  • Chen, L.L., and Haines, T.H., 1976, Flagellar membrane of Ochromonas danica, J. Biol. Chem. 251:1828–1834.

    PubMed  CAS  Google Scholar 

  • Clark, J.T., and Holberton, D.V., 1988, Triton labile antigens in flagella isolated from Giardia lamblia, Parasitol. Res. 74:415–423.

    PubMed  CAS  Google Scholar 

  • Contreras, V.T., Morel, C.M., and Goldenberg, S., 1985a, Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis, Mol. Biochem. Parasitol. 14:83–96.

    PubMed  CAS  Google Scholar 

  • Contreras, V.T., Salles, J.M., Thomas, N., Morel, C.M., and Goldenberg, S., 1985b, In vitro differentiation of Trypanosoma cruzi under chemically defined conditions, Mol. Biochem. Parasitol. 16:315–327.

    PubMed  CAS  Google Scholar 

  • Coppens, L., Opperdoes, F.R., Courtoy, P.J., and Baudhuin, P., 1987, Receptor mediated endocytosis in the bloodstream form of Trypanosoma brucei, J. Protozool. 34:465–473.

    PubMed  CAS  Google Scholar 

  • Cowin, P., and Garrod, D.R., 1983, Antibodies to epithelial desmosomes show wide tissue and species crossreactivity, Nature 302:148–150.

    PubMed  CAS  Google Scholar 

  • Crane, M.S.J., and Dvorak, J.A., 1982, Trypanosoma cruzi: Spontaneous transformation by a Y strain variant in liquid medium, Exp. Parasitol. 54:87–92.

    PubMed  CAS  Google Scholar 

  • Cross, G.A.M., 1975, Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei, Parasitology 71:393–417.

    PubMed  CAS  Google Scholar 

  • Current, W., 1980, Cryptobia sp. in the snail Triadopsis multilineata (Say): Fine structure of attached flagellates and their mode of attachment to the spermatheca, J. Protozool. 27:278–287.

    Google Scholar 

  • De Souza, W., 1984, Cell biology of Trypanosoma cruzi, Int. Rev. Cytol. 86:197–283.

    PubMed  Google Scholar 

  • De Souza, W., 1989, The cell surface of trypanosomatids, in: Progress in Protozoology, Volume 3 (J.O. Corliss and D.J. Patterson, eds.), Biopress, Bristol, pp. 87–184.

    Google Scholar 

  • De Souza, W., Martinez-Palomo, A., and Gonzales-Robles, A., 1978, The cell surface of Trypanosoma cruzi: Cytochemistry and freeze-fracture, J. Cell Sci. 33:285–299.

    PubMed  Google Scholar 

  • De Souza, W., Chavez, B., and Martinez-Palomo, A., 1979, Freeze-fracture study of the cell membrane of Herpetomonas samuelpessoai, J. Parasitol. 65:109–116.

    Google Scholar 

  • Desser, S.S., 1976, The ultrastructure of the epimastigote stages of Trypanosoma rotatorium in the leech Batracobdella picta, Can. J. Zool. 54:1712–1723.

    Google Scholar 

  • Dollet, M., 1984, Plant diseases caused by flagellate protozoa (Phytomonas), Annu. Rev. Phytopathol. 22:115–132.

    Google Scholar 

  • Duszenko, M., Ivanov, I.E., Ferguson, M.A.J., Plesken, H., and Cross, G.A.M., 1988, Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei, J. Cell Biol. 106:77–86.

    PubMed  CAS  Google Scholar 

  • Dwyer, D., 1977, Leishmania donovani: Surface membrane carbohydrates of promastigotes, Exp. Parasitol. 41:341–358.

    PubMed  CAS  Google Scholar 

  • Ellis, D.S., Ormerod, W.E., and Lumsden, W.H.R., 1976, Filaments of Trypanosoma brucei: Some notes on differences in origin and structure in two strains of Trypanosoma (Trypanozoon) brucei rhodesiense, Acta Trop. 33:151–168.

    PubMed  CAS  Google Scholar 

  • Ellis, D.S., Evans, D.A., and Stamford, S., 1980, The penetration of the salivary glands of Rhodniusprolixus by Trypanosoma rangeli, Z. Parasitenkd 62:63–74.

    PubMed  CAS  Google Scholar 

  • Erlandsen, S.L., and Feely, D., 1984, Trophozoite motility and the mechanism of attachment, in: Giardia and Giardiasis: Biology, Pathogenesis and Epidemiology (S.L. Erlandsen and E.A. Meyer, eds.), Plenum Press, New York, pp. 33–63.

    Google Scholar 

  • Etges, R., Bouvier, J., and Bordier, C., 1987, The promastigote surface protease of Leishmania, in: Host-Parasite Cellular and Molecular Interactions in Protozoal Infections, NATO ASI Series H, Volume 11 (K.P. Chang and D. Snary, eds.), Springer-Verlag, Berlin, pp. 165–168.

    Google Scholar 

  • Evans, D.A., and Ellis, D.S., 1983, Recent observations on the behaviour of certain trypanosomes within their insect hosts, Adv. Parasitol. 22:2–42.

    Google Scholar 

  • Evans, D.A., Ellis, D.S., and Stamford, S., 1979, Ultrastructural studies of certain aspects of the development of Trypanosoma congolense in Glossina morsitans, J. Protozool. 26:557–563.

    PubMed  CAS  Google Scholar 

  • Farina, M., Attias, M., Souto-Poudron, T., and De Souza, W., 1986, Further studies on the organization of the paraxial rod of trypanosomatids, J. Protozool. 33:352–357.

    Google Scholar 

  • Farthing, M.J.G., 1985, Receptors and recognition mechanisms in intestinal infection, Trans. R. Soc. Trop. Med. Hyg. 79:569–576.

    PubMed  CAS  Google Scholar 

  • Fish, W.R., Nelson, R.T., and Hirumi, H., 1987, Cell adhesion in Trypanosoma in vitro studies of the interaction of Trypanosoma vivax with immobilized organic dyes, J. Protozool. 34:457–464.

    PubMed  CAS  Google Scholar 

  • Flint, J.E., Schechter, M., Chapman, M.D., and Miles, M.A., 1984, Zymodeme and species specificities of monoclonal antibodies raised against Trypanosoma cruzi, Trans. R. Soc. Trop. Med. Hyg. 78:193–202.

    PubMed  CAS  Google Scholar 

  • Freymuller, E., and Camargo, E.P., 1981, Ultrastructural differences between species of trypanosomatids with and without symbionts, J. Protozool. 28:175–182.

    PubMed  CAS  Google Scholar 

  • Gallo, J.-M., and Schrevel, J., 1985, Homologies between paraflagellar rod proteins from trypanosomes and euglenoids revealed by a monoclonal antibody, Eur. J. Cell Biol. 36:163–168.

    PubMed  CAS  Google Scholar 

  • Gibson, W.C., and Miles, M.A., 1985, Application of new technologies to epidemiology, Br. Med. Bull. 41: 115–121.

    PubMed  CAS  Google Scholar 

  • Goldstein, S.F., 1974, Isolated, reactivated and laser-irradiated cilia and flagella, in: Cilia and Flagella (M.A. Sleigh, ed.), Academic Press, New York, pp. 111–130.

    Google Scholar 

  • Gray, M.A., Cunningham, I., Gardiner, P.R., Taylor, A.M., and Luckins, A.G., 1981, Cultivation of infective forms of Trypanosoma congolense at 28°C from trypanosomes in the proboscis of Glossina morsitans, Parasitology 82:81–95.

    PubMed  CAS  Google Scholar 

  • Gray, M.A., Ross, C.A., Taylor, A.M., and Luckins, A.G., 1984, In vitro cultivation of Trypanosoma congolense: The production of infective metacyclic trypanosomes in cultures initiated from cloned stocks, Acta Trop. 41:343–353.

    PubMed  CAS  Google Scholar 

  • Handman, E., and Goding, J.W., 1985, The Leishmania receptor for macrophages is a lipid-containing glycoconjugate, EMBOJ. 4:329–336.

    CAS  Google Scholar 

  • Heath, J.P., and Dunn, G.A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system, J. Cell Sci. 29:197–212.

    PubMed  CAS  Google Scholar 

  • Hendry, K.A.K., 1987, Studies on the flagellar attachment of African trypanosomes, Ph.D. thesis, University of Glasgow.

    Google Scholar 

  • Hendry, K.A.K., and Vickerman, K., 1988, The requirement for epimastigote attachment during division and metacyclogenesis in Trypanosoma congolense, Parasitol. Res. 74:403–408.

    PubMed  CAS  Google Scholar 

  • Hoare, C.A., 1949, Handbook of Medical Protozoology, Ballière, Tindall & Cox, London.

    Google Scholar 

  • Hogan, J.C., and Patton, G.L., 1976, Variation in intramembrane components of Trypanosoma brucei from intact and x-irradiated rats: A freeze-cleave study, J. Protozool. 23:205–215.

    PubMed  Google Scholar 

  • Holberton, D.V., 1974, Attachment of Giardia—A hydrodynamic model based on flagellar activity, J. Exp. Biol. 60:207–221.

    PubMed  CAS  Google Scholar 

  • Hommel, M., and Robertson, E., 1976, In vitro attachment of trypanosomes to plastic, Experientia 32:464–466.

    PubMed  CAS  Google Scholar 

  • Hyams, J.S., 1982, The Euglena paraflagellar rod: Structure, relationship to other flagellar components and preliminary biochemical characterization, J. Cell Sci. 55:199–210.

    PubMed  CAS  Google Scholar 

  • Ismach, R., Cianci, J.P., Caulfield, J.P., Langer, P., and McMahon-Pratt, D., 1989, Flagellar membrane and paraxial rod proteins of Leishmania: Characterization employing monoclonal antibodies, J. Protozool. in press.

    Google Scholar 

  • Jackson, P.R., Honigberg, B.M., and Holt, S.C., 1978, Lectin analysis of Trypanosoma congolense bloodstream trypomastigote and culture procyclic surface saccharides by agglutination and electron microscopic techniques, J. Protozool. 25:471–481.

    PubMed  CAS  Google Scholar 

  • Jenni, L., Molyneux, D.H., Livesey, J.L., and Galun, R., 1980, Feeding behaviour of tsetse flies infected with salivarian trypanosomes, Nature 283:383–385.

    PubMed  CAS  Google Scholar 

  • Jenni, L., Marti, J., Schweizer, J., Betschart, B., Le Page, R.W.F., Wells, J.M., Tait, A., Paindavoine, P., Pays, E., and Steinert, M., 1986, Hybrid formation between African trypanosomes during cyclical transmission, Nature 322:173–175.

    PubMed  CAS  Google Scholar 

  • Jones, J.C.R., and Goldman, R.D., 1985, Intermediate filaments and the initiation of desmosome assembly, J. Cell Biol. 101:506–517.

    PubMed  CAS  Google Scholar 

  • Kaminsky, R., Beaudoin, E., and Cunningham, I., 1987, Studies on the development of metacyclic Trypanosoma bruceis sspp. cultivated with insect cell lines, J. Protozool. 34:372–377.

    PubMed  CAS  Google Scholar 

  • Killick-Kendrick, R., 1979, Biology of Leishmania in phlebotomine sandflies, in: Biology of the Kinetoplastida, Volume 2 (W.H.R. Lumsden and D.A. Evans, eds.), Academic Press, New York, pp. 395–460.

    Google Scholar 

  • Killick-Kendrick, R., and Molyneux, D.H., 1981, Transmission of leishmaniasis by the bite of phlebotomine sandflies: Possible mechanisms, Trans. R. Soc. Trop. Med. Hyg. 75:152–154.

    PubMed  CAS  Google Scholar 

  • Killick-Kendrick, R., Molyneux, D.H., and Ashford, R.W., 1974, Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the midgut and oesophageal valve of the sandfly, Proc. R. Soc. London Ser. B 187:409–419.

    CAS  Google Scholar 

  • Killick-Kendrick, R., Leaney, A.J., Ready, P.D., and Molyneux, D.H., 1977, Leishmania in phlebotomid sandflies. IV. The transmission of Leishmania mexicana amazonensis by the bite of experimentallyinfected Lutzomyia longipalpis, Proc. R. Soc. London Ser. B 196:105–115.

    CAS  Google Scholar 

  • Killick-Kendrick, R., Wallbanks, K.R., Molyneux, D.H., and Lavin, D.R., 1988, The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi, Parasitol. Res. 74:586–590.

    PubMed  CAS  Google Scholar 

  • Lauge, G., and Nishioka, R.S., 1977, Ultrastructural study of the relations between Leptomonas oncopelti (Noguchi and Tilden) Protozoa: Trypanosomatidae, and the rectal wall of the adults of Oncopeltusfasciatus Dell (Hemiptera: Lygaeidae), J. Morphol. 154:291–305.

    Google Scholar 

  • Lawyer, P.G., Young, D.G., Butler, J.F., and Akin, D.E., 1987, Development of Leishmania mexicana in Lutzomyia diabolica and Lutzomyia shannoni (Diptera: Psychodidae), J. Med. Entomol. 24:347–355.

    PubMed  CAS  Google Scholar 

  • Lewis, J.W., and Ball, S.J., 1979, Attachment of the epimastigotes of Trypanosoma cobitis (Mitrophanow 1885) to the crop wall of the leech vector Hemiclepsis marginata, Z. Parasitenkd. 60:29–36.

    Google Scholar 

  • Linder, J.C., and Staehelin, L.A., 1977, Plasma membrane specializations in a trypanosomatid flagellate, J. Ultrastruct. Res. 60:246–262.

    PubMed  CAS  Google Scholar 

  • Livesey, J.L., Molyneux, D.H., and Jenni, L., 1980, Mechanoreceptor-trypanosome interactions in the labrum of Glossina: Fluid mechanics, Acta Trop. 37:151–161.

    PubMed  CAS  Google Scholar 

  • Lom, J., 1980, Cryptobia branchialis Nie from fish gills: Ultrastructural evidence of ectocommensal function, J. Fish Dis. 3:427–436.

    Google Scholar 

  • Maraghi, S., Mohamed, H.A., Wallbanks, K.R., and Molyneux, D.H., 1987, Scratched plastic as a substrate for trypanosomatid attachment, Ann. Trop. Med. Parasitol. 81:457–458.

    PubMed  CAS  Google Scholar 

  • Molyneux, D.H., 1969a, The fine structure of the epimastigote forms of Trypanosoma lewisi in the rectum of the flea, Nosopsyllus fasciatus, Parasitology 59:55–66.

    PubMed  CAS  Google Scholar 

  • Molyneux, D.H., 1969b, Intracellular stages of Trypanosoma lewisi, in fleas and attempts to find such stages in other trypanosome species, Parasitology 59:737–744.

    Google Scholar 

  • Molyneux, D.H., 1975, Trypanosoma (Megatrypanum) melophagium: Modes of attachment of parasites to midgut, hindgut and rectum of the sheep ked, Melophagus ovinus, Acta Trop. 32:65–74.

    CAS  Google Scholar 

  • Molyneux, D.H., 1980, Host-trypanosome interactions in Glossina, Insect Sci. Appl. 1:39–46.

    Google Scholar 

  • Molyneux, D.H., 1983, Host-parasite relationships of Trypanosomatidae in vectors, in: Current Topics in Vector Research, Volume 1 (K.F. Harris, ed.), Praeger Publications, New York, pp. 117–148.

    Google Scholar 

  • Molyneux, D.H., and Ashford, R.W., 1975, Observations on a trypanosomatid flagellate in a flea, Peromyscopsylla silvatica spectabilis, Ann. Parasitol. Hum. Comp. 50:265–274.

    PubMed  CAS  Google Scholar 

  • Molyneux, D.H., and Killick-Kendrick, R., 1987, Morphology, ultrastructure and life-cycles, in: The Leishmaniases in Biology and Medicine, Volume 1 (W. Peters and R. Killick-Kendrick, eds.), Academic Press, New York, pp. 121–176.

    Google Scholar 

  • Molyneux, D.H., Killick-Kendrick, R., and Ashford, R.W., 1975, Leishmania in phlebotomid sandflies. III. The ultrastructure of Leishmania mexicana amazonensis in the midgut and pharynx of Lutzomyia longipalpis, Proc. R. Soc. London Ser. B 190:341–357.

    CAS  Google Scholar 

  • Molyneux, D.H., Lavin, D.R., and Elce, B., 1979, A possible relationship between salivarian trypanosomes and Glossina labrum mechano-receptors, Ann. Trop. Med. Parasitol. 73:287–290.

    PubMed  CAS  Google Scholar 

  • Molyneux, D.H., Croft, S.L., and Lavin, P.R., 1981, Studies on the host-parasite relationships of Leptomonas species (Protozoa: Kinetoplastida) of Siphonaptera, J. Nat. Hist. 15:395–406.

    Google Scholar 

  • Molyneux, D.H., Wallbanks, K.R., and Ingram, G.A., 1987, Trypanosomatid-vector interface—in vitro studies on parasite substrate interactions, in: Host-Parasite Cellular and Molecular Interactions in Protozoal Infections, NATO Series H Volume 11 (K.P. Chang and D. Snary, eds.), Springer-Verlag, Berlin, pp. 387–396.

    Google Scholar 

  • Mungomba, L.M., Molyneux, D.H. and Wallbanks, K.R., 1989, Host-parasite relationship of Trypanosoma corvi in Ornithomyia avicularia, Parasitol. Res. 75: 167–174.

    PubMed  CAS  Google Scholar 

  • Nogueira, N., 1983, Host and parasite factors affecting the invasion of mononuclear phagocytes by Trypanosoma cruzi, in: Cytopathology of Parasitic Disease, Ciba Symposium New Series 90, Pitman, London, pp. 52–73.

    Google Scholar 

  • Olecnick, J.G., Wolff, R., Nauman, R.K., and McLaughlin, J., 1988, A flagellar pocket membrane fraction from Trypanosoma brucei rhodesiense: Immunogold localization and non-variant immunoprotection, Infect. Immun. 56:92–98.

    Google Scholar 

  • Ouaissi, M.A., 1986, Identification and isolation of Trypanosoma cruzi trypomastigote cell surface protein with properties expected of a fibronectin receptor, Mol. Biochem. Parasitol. 19:201–211.

    PubMed  CAS  Google Scholar 

  • Overton, J., 1975, Experiments with junctions of the adhaerens type, Curr. Top. Dev. Biol. 10:1–34.

    PubMed  CAS  Google Scholar 

  • Overton, J., 1982, Inhibition of desmosome formation with tunicamycin and with lectin in corneal cell aggregates, Dev. Biol. 92:66–72.

    PubMed  CAS  Google Scholar 

  • Pays, E., 1988, Expression of variant-specific antigen genes in African trypanosomes, Biol. Cell. 64:121–130.

    PubMed  CAS  Google Scholar 

  • Pearson, R.D., Wheeler, D.A., Harrison, L.H., and Kay, H.D., 1983, The immunobiology of leishmaniasis, Rev. Infect. Dis. 5:907–927.

    PubMed  CAS  Google Scholar 

  • Peng, P.L.-M., and Wallace, F.G., 1982, The cysts of Blastocrithidia triatomae Cerisola et al. 1971, J. Protozool. 29:464–467.

    Google Scholar 

  • Pereira, M.E.A., Andrade, A.F.B., and Ribeiro, J.M.V., 1981, Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi, Science 211:597–600.

    PubMed  CAS  Google Scholar 

  • Pereira, N.M., De Souza, W., Machado, R.D., and Castro, F.T., 1977, Isolation and properties of flagella of trypanosomatids, J. Protozool. 24:511–514.

    PubMed  CAS  Google Scholar 

  • Pereira, N.M., Timm, S.L., Da Costa, S.C.G., Rebello, M.A., and De Souza, W., 1978, Trypanosoma cruzi isolation and characterization of membrane and flagellar fractions, Exp. Parasitol. 46:225–234.

    PubMed  CAS  Google Scholar 

  • Petry, K., Baltz, T., and Schottelius, J., 1986, Differentiation of Trypanosoma cruzi, T.cruzi marinkellei, T.dionisii and T.vespertilionis by monoclonal antibodies, Acta Trop. 43:5–13.

    PubMed  CAS  Google Scholar 

  • Petry, K., Schottelius, J., and Baltz, T., 1987, Characterization of a 19,000 mol. wt. flagellum-specific protein of Trypanosoma cruzi, T.dionisii and T.vespertilionis by a monoclonal antibody, Parasitol. Res. 73:180–181.

    PubMed  CAS  Google Scholar 

  • Pimenta, P.F.P., and De Souza, W., 1987, Leishmania mexicana. Distribution of intramembranous particles and filipin-sterol complexes in amastigotes and promastigotes, Exp. Parasitol. 63:117–135.

    PubMed  CAS  Google Scholar 

  • Pruss, R.M., Mirsky, R., and Raff, M.C., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27:419–428.

    PubMed  CAS  Google Scholar 

  • Reduth, D., and Schaub, G.A., 1988, The ultrastructure of the cysts of Blastocrithidia triatomae Cerisola et al. 1971, (Trypanosomatidae): A freeze cleave study, Parasitol. Res. 74:301–306.

    PubMed  CAS  Google Scholar 

  • Reduth, D., Schaub, G.A., and Pudney, M., 1984, Cultivation of Blastocrithidia triatomae (Trypanosomatidae) in a cell line of its host Triatoma infestans (Reduviidae), Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 258: 383.

    Google Scholar 

  • Richardson, J.P., Jenni, L., Beecroft, R.P., and Pearson, T.W., 1986, Procyclic tsetse fly midgut forms of African trypanosomes share stage and species-specific surface antigens identified by monoclonal antibodies, J. Immunol. 136:2259–2265.

    PubMed  CAS  Google Scholar 

  • Roditi, I., Schwarz, H., Pearson, T.W., Beecroft, R.P., Liu, M.K., Richardson, J.P., Buhring, H-J., Pleiss, J., Bulow, R., Williams, R.O., and Overath, P., 1989, Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei, J. Cell Biol. 108: 737–746.

    PubMed  CAS  Google Scholar 

  • Rogalski, A.A., and Bouck, G.B., 1982, Flagellar surface antigens in Euglena; immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum, J. Cell Biol. 93:758–766.

    PubMed  CAS  Google Scholar 

  • Ross, C.A., 1987, Trypanosoma congolense: Differentiation to metacyclic trypanosomes in culture depends on the concentration of glutamine or proline, Acta Trop. 44:293–301.

    PubMed  CAS  Google Scholar 

  • Rowton, E.P., Lushbaugh, W.B., and McGhee, R.B., 1981, Ultrastructure of the flagellar apparatus and attachment of Herpetomonas ampelophilae in the gut and Malpighian tubules of Drosophila melanogaster, J. Protozool 28:297–301.

    Google Scholar 

  • Russell, D.G., and Wilhelm, H., 1986, The involvement of GP63, the major surface glycoprotein in the attachment of Leishmania promastigotes to macrophages, J. Immunol. 136:2613–2620.

    PubMed  CAS  Google Scholar 

  • Russell, D.G., Newsam, R., Palmer, G.C., and Gull, K., 1983, Structural and biochemical characterization of the paraflagellar rod of Crithidia fasciculata, Eur. J. Cell Biol. 30:137–143.

    PubMed  CAS  Google Scholar 

  • Sacks, D.L., and Perkins, P.V., 1985, Development of infective stage Leishmania promastigotes within phlebotomine sandflies, Am. J. Trop. Med. Hyg. 34:456–459.

    PubMed  CAS  Google Scholar 

  • Sacks, D.L., Hieny, S., and Sher, A., 1985, Identification of cell surface carbohydrates and antigenic changes between non-infective and infective developmental stages of Leishmania major promastigotes, J. Immunol. 135:564–569.

    PubMed  CAS  Google Scholar 

  • Schaub, G.A., and Boker, C.A., 1986, Scanning electron microscopic studies of Blastocrithidia triatomae (Trypanosomatidae) in the rectum of Triatoma infestans (Reduviidae), J. Protozool. 33:266–270.

    Google Scholar 

  • Schaub, G.A., and Schnitker, A., 1989, Influence of Blastocrithidia triatomae (Trypanosomatidae) in the reduviid bug Triatoma infestans: Alterations of the Malpighian tubules, Parasitol. Res. 75: 88–97.

    Google Scholar 

  • Schneider, A., Lutz, H.U., Marugg, R., Gehr, P., and Seebeck, T., 1988, Spectrin-like proteins in the paraflagellar rod structure of Trypanosoma brucei, J. Cell Sci. 90:307–315.

    PubMed  CAS  Google Scholar 

  • Segura, E.L., Paulone, I., Cerisola, J., and Gonzalez-Cappa, S.M., 1976, Experimental Chagas’ disease: Protective activity in relation to subcellular fractions of the parasite, J. Parasitol. 62:131–133.

    PubMed  CAS  Google Scholar 

  • Segura, E.L., Vazquez, C., Bronzina, A., Campos, J.M., Cerisola, J.A., and Gonzalez-Cappa, S.M., 1977, Antigens of the subcellular fractions of Trypanosoma cruzi. II. Flagella and membrane fractions, J. Protozool. 24:540–543.

    PubMed  CAS  Google Scholar 

  • Segura, E.L., Bua, J., Rosenstein de Campini, A., Subias, E., Esteva, M., Moreno, M., and Ruiz, A., 1986, Monoclonal antibodies against the flagellar fraction of epimastigotes of Trypanosoma cruzi: Complementmediated lytic activity against trypomastigotes and passive immunoprotection of mice, Immunol. Lett. 13: 165–171.

    PubMed  CAS  Google Scholar 

  • Severs, J.N., and Robenek, H., 1983, Detection of microdomains in biomembranes. An appraisal of recent developments in freeze-fracture cytochemistry, Biochim. Biophys. Acta 737:373–408.

    PubMed  CAS  Google Scholar 

  • Sher, A., and Snary, D., 1982, Specific inhibition of the morphogenesis of Trypanosoma cruzi by a monoclonal antibody, Nature 300:639–640.

    PubMed  CAS  Google Scholar 

  • Skerrow, C.J., 1986, Desmosomal proteins, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A.G. Matoltsy, and K.S. Richards, eds.), Springer-Verlag, Berlin, pp. 762–782.

    Google Scholar 

  • Smith, D.S., Njogu, A.R., Cayer, M., and Jarlfors, U., 1974, Observations on freeze-fractured membranes of a trypanosome, Tissue Cell 6:223–241.

    PubMed  CAS  Google Scholar 

  • Snary, D., Ferguson, M.A.J., Allen, A.K., Miles, M.A., and Sher, A., 1987, Cell surface glycoproteins of Trypanosoma cruzi, in: Host-Parasite Cellular and Molecular Interactions in Protozoal Infections, NATO ASI Series H, Volume 11 (K.P. Chang and D. Snary, eds.), Springer-Verlag, Berlin, pp. 79–87.

    Google Scholar 

  • Soares, M.J., and De Souza, W., 1987, The ultrastructure of Blastocrithidia culicis as seen in thin sections and freeze-fracture replicas, Biol. Cell. 61:101–108.

    PubMed  CAS  Google Scholar 

  • Soares, M.J., Brazil, R.P., Tanuri, A., and De Souza, W., 1986, Some ultrastructural aspects of Crithidia guilhermei n.sp. isolated from Phaenicia cuprina (Diptera: Calliphoridae), Can. J. Zool. 64:2837–2842.

    Google Scholar 

  • Souto-Padron, T., and De Souza, W., 1983, Freeze-fracture localization of filipin-cholesterol complexes in the plasma membrane of Trypanosoma cruzi, J. Parasitol. 69:129–137.

    PubMed  CAS  Google Scholar 

  • Souto-Padron, T., Goncalves de Lima, V.M.Q., Roitman, I., and De Souza, W., 1980, Fine structure study of Leptomonas samueli by the freeze-fracture technique, Z. Parasitenkd. 62:145–157.

    Google Scholar 

  • Steiger, R., 1973, On the ultrastructure of Trypanosoma (Trypanozoon) brucei in the course of its life cycle and some related aspects, Acta Trop. 30:164–168.

    Google Scholar 

  • Targett, G.A.T., and Viens, P., 1975, The immunological response of CBA mice to Trypanosoma musculi: Elimination of the parasite from the blood, Int. J. Parasitol. 5:231–234.

    PubMed  CAS  Google Scholar 

  • Taylor, A.E.R., and Baker, J.R. (eds.), 1987, In Vitro Methods for Parasite Cultivation, Academic Press, New York.

    Google Scholar 

  • Tetley, L., 1986, Freeze-fracture studies on the surface membranes of pleomorphic bloodstream and in vitro transformed procyclic Trypanosoma brucei, Acta Trop. 43:307–317.

    PubMed  CAS  Google Scholar 

  • Tetley, L., and Vickerman, K., 1985, Differentiation in Trypanosoma brucei: Host-parasite cell junctions and their persistence during acquisition of the variable antigen coat, J. Cell Sci. 74:1–19.

    PubMed  CAS  Google Scholar 

  • Tetley, L., Coombs, G.H., and Vickerman, K., 1986, The surface membrane of Leishmania mexicana mexicana: Comparison of amastigote and promastigote using freeze-fracture cytochemistry, Z. Parasitenkd. 72:281–292.

    PubMed  CAS  Google Scholar 

  • Tetley, L., Turner, C.M.R., Barry, J.D., Crowe, J.S., and Vickerman, K., 1987, Onset of expression of the variant surface glycoproteins of Trypanosoma brucei in the tsetse fly studied using immunoelectron microscopy, J. Cell Sci. 87:363–372.

    PubMed  CAS  Google Scholar 

  • Thevenaz, P., and Hecker, H., 1980, Distribution and attachment of Trypanosoma (Nannomonas) congolense in the proximal part of the proboscis of Glossina morsitans morsitans, Acta Trop. 37:163–173.

    PubMed  CAS  Google Scholar 

  • Tieszen, K.L., and Molyneux, D.H., 1989, Morphology and host parasite relationships of Crithidia flexonema (Trypanosomatidae) in the hindgut and Malpighian tubules of Gerris odontogaster (Hemiptera: Gerridae), J. Parasitol. 75: 441–448.

    Google Scholar 

  • Tieszen, K.L., Heywood, P., and Molyneux, D.H., 1983, Ultrastructure and host-parasite association of Blastocrithidia gerridis in the ventriculus of Gerris odontogaster (Hemiptera: Gerridae), Can. J. Zool. 61: 1900–1909.

    Google Scholar 

  • Tieszen, K.L., Molyneux, D.H., and Abdel-Hafez, S.K., 1986, Host-parasite relationships of Blastocrithidia familiaris in Lygaeus pandurus Scop. (Hemiptera: Lygaeidae), Parasitology 92:1–12.

    Google Scholar 

  • Tieszen, K.L., Molyneux, D.H., and Abdel-Hafez, S.K., 1989, Host-parasite relationships and cysts of Leptomonas lygaei (Trypanosomatidae) in Lygaeus pandurus (Hemiptera: Lygaeidae), Parasitology 98: 393–400.

    Google Scholar 

  • Trinkhaus-Randall, V., and Gipson, I.K., 1984, Role of calcium and calmodulin in hemidesmosome formation in vitro, J. Cell Biol. 98:1565–1571.

    Google Scholar 

  • Turco, S.J., Johnson, C.L., King, D.L., Orlandi, P.A., and Wright, B.L., 1987, The structure, localization and function of the lipophosphoglycan of Leishmania donovani, in: Host-Parasite Cellular and Molecular Interactions in Protozoal Infections, NATO ASI Series H, Volume 11 (K.P. Chang and D. Snary, eds.), Springer-Verlag, Berlin, pp. 197–201.

    Google Scholar 

  • Verschueren, H., 1985, Interference reflection microscopy in cell biology: Methodology and applications, J. Cell Sci. 75:279–301.

    PubMed  CAS  Google Scholar 

  • Vickerman, K., 1969, On the surface coat and flagellar adhesion in trypanosomes, J. Cell Sci. 5:163–194.

    PubMed  CAS  Google Scholar 

  • Vickerman, K., 1973, The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly, Glossina fuscipes, J. Protozool. 20:394–404.

    CAS  Google Scholar 

  • Vickerman, K., 1974, Antigenic variation in African trypanosomes, in: Parasites in the Immunized Host: Mechanisms of Survival, Ciba Symposium New Series 25, Elsevier, Amsterdam, pp. 53-80.

    Google Scholar 

  • Vickerman, K., 1976, The diversity of the kinetoplastid flagellates, in: Biology of the Kinetoplastida, Volume 1 (W.H.R. Lumsden and D.A. Evans, eds.), Academic Press, New York, pp. 1–34.

    Google Scholar 

  • Vickerman, K., 1985, Developmental cycles and biology of pathogenic trypanosomes, Br. Med. Bull. 41:105–114.

    PubMed  CAS  Google Scholar 

  • Vickerman, K., 1989, Order Kinetoplastida Honigberg 1963, in: Handbook of Protoctista (L. Margulis, J.O. Corliss, M. Melkonian, and D. Chapman, eds.), Jones & Bartlett, Boston, in press.

    Google Scholar 

  • Vickerman, K., and Barry, J.D., 1982, African trypanosomiasis, in: Immunology of Parasitic Infections, 2nd ed. (S. Cohen and K.S. Warren, eds.), Blackwell, Oxford, pp. 204–260.

    Google Scholar 

  • Vickerman, K., and Preston, T.M., 1976, Comparative cell biology of the kinetoplastid flagellates, in: Biology of the Kinetoplastida, Volume 1 (W.H.R. Lumsden and D.A. Evans, eds.), Academic Press, New York, pp. 35–130.

    Google Scholar 

  • Vickerman, K., and Tetley, L., 1979, Biology and ultrastructure of trypanosomes in relation to pathogenesis, in: Pathogenicity of Trypanosomes (G. Losos and A. Chouinard, eds.), IDRC, Ottawa, Canada, pp. 23–31.

    Google Scholar 

  • Vickerman, K., Tetley, L., Hendry, K.A.K., and Turner, C.M.R., 1988, Biology of African trypanosomes in the tsetse fly, Biol. Cell. 64: 109–119.

    PubMed  CAS  Google Scholar 

  • Wallbanks, K.R., Molyneux, D.H., and Dirie, M.F., 1989, Chitin derivatives as novel substrates for Trypanosoma brucei brucei attachment in vitro, Acta Trop. 46:63–68.

    PubMed  CAS  Google Scholar 

  • Williams P., 1976, Flagellate infections in cave-dwelling sandflies (Diptera: Psychodidae) in Belize, Central America, Bull. Entomol. Res. 65:615–629.

    Google Scholar 

  • Witman, G.B., Carlson, K., Berliner, J., and Rosenbaum, J.L., 1972, Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes and mastigonemes, J. Cell Biol. 54:507–539.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., Plummer, J., and Sander, G., 1978, Chlamydomonas flagellar mutants lacking radial spokes and central tubules, J. Cell Biol. 76:729–742.

    PubMed  CAS  Google Scholar 

  • Woo, P.T.K., 1987, Cryptobia and cryptobiosis in fishes, Adv. Parasitol. 26:199–237.

    PubMed  CAS  Google Scholar 

  • Zeledon, R., Alvarenga, N.J., and Schosinsky, K., 1977, Ecology of Trypanosoma cruzi in the insect vector, in: Pan America Health Organisation Scientific Publication No. 347, Proceedings of an International Symposium 27 June, pp. 59-70.

    Google Scholar 

  • Zeledon, R., Bolanos, R., and Rojas, M., 1984, Scanning electron microscopy of the final phase of the life cycle of Trypanosoma cruzi in the insect vector, Acta Trop. 41:39–43.

    PubMed  CAS  Google Scholar 

  • Zenian, A., Rowles, P., and Gingell, D., 1979, Scanning electron microscopic study of the uptake of Leishmania parasites by macrophages, J. Cell Sci. 39:187–199.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vickerman, K., Tetley, L. (1990). Flagellar Surfaces of Parasitic Protozoa and Their Role in Attachment. In: Bloodgood, R.A. (eds) Ciliary and Flagellar Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0515-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0515-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7845-0

  • Online ISBN: 978-1-4613-0515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics