Introduction to Cilia and Flagella

  • George B. Witman

Abstract

Cilia and flagella of eukaryotes are generally long, whiplike appendages extending from the cell body; historically, the term flagellum has been used when these structures are present singly or in small numbers, whereas the term cilium has been used when the structures occur in larger numbers. Typically, a flagellum propagates nearly symmetrical bends from the base to the tip of the organelle, causing the fluid in which it is beating to flow parallel to the flagellar axis (Fig. 1). Cilia generally move with an asymmetrical beat consisting of an effective and a recovery stroke. During the effective stroke a large bend is formed at the base of the cilium, causing the cilium to slice rapidly through the medium; this is followed by the recovery stroke, during which the bend is propagated along the ciliary shaft until the cilium returns to the position it held before the beginning of the effective stroke. The result of this beat pattern is that fluid is moved parallel to the cell surface in the direction of the effective stroke (Fig. 1). Cilia and flagella are very similar if not identical in terms of their internal structures and mechanisms of movement; indeed, the flagella of many organisms can beat with both flagellar and ciliary type waveforms. Consequently, most of my general comments about these organelles may be applied equally well to either cilia or flagella. The eukaryotic flagellum should not be confused with the prokaryotic flagellum, which is a completely different structure having a different protein composition and a different mechanism of movement (see Macnab, 1987a,b, for reviews). The prokaryotic flagellum is an extracellular appendage, whereas the eukaryotic flagellum is an intracellular organelle, surrounded by an extension of the cell’s plasma membrane. It is, of course, the interesting and frequently unique properties of ciliary and flagellar membranes that are the raison d’être of this book.

Keywords

Respiration Adenosine Polypeptide Trypsin Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamek, G.D., Gesteland, R.C., Mair, R.G., and Oakley, B., 1984, Transduction physiology of olfactory receptor cilia, Brain Res. 310:87–97.PubMedGoogle Scholar
  2. Adams, G.M.W., Huang, B., Piperno, G., and Luck, D.J.L., 1981, Central-pair microtubular complex of Chlamydomonas flagella: Polypeptide composition as revealed by analysis of mutants, J. Cell Biol. 91:69–76.PubMedGoogle Scholar
  3. Afzelius, B., 1959, Electron microscopy of the sperm tail. Results obtained with a new fixative, J. Biophys. Biochem. Cytol. 5:269–278.Google Scholar
  4. Afzelius, B.A., 1976, A human syndrome caused by immotile cilia, Science 193:317–319.PubMedGoogle Scholar
  5. Afzelius, B.A., 1979, The immotile cilia syndrome and other ciliary diseases, Int. Rev. Exp. Pathol. 19:1–43.PubMedGoogle Scholar
  6. Afzelius, B.A., Camner, P., and Mossberg, B., 1978, On the function of cilia in the female reproductive tract, Fertil. Steril. 29:72–74.PubMedGoogle Scholar
  7. Aiello, E.L., 1960, Factors affecting ciliary activity on the gill of the mussel Mytilus edulis, Physiol. Zool. 33: 120–135.Google Scholar
  8. Aiello, E., and Guideri, G., 1964, Nervous control of ciliary activity, Science 146:1692–1693.PubMedGoogle Scholar
  9. Alkon, D.L., 1983, The role of statocyst sensory cilia in mechanotransduction, J. Submicrosc. Cytol. 15:145–150.Google Scholar
  10. Anderson, R.G.W., 1972, The three-dimensional structure of the basal body from the rhesus monkey oviduct, J. Cell Biol. 54:246–265.PubMedGoogle Scholar
  11. Avolio, J., Glazzard, A.N., Holwill, M.E.J., and Satir, P., 1986, Structures attached to doublet microtubules of cilia: Computer modeling of thin-section and negative-stain stereo images, Proc. Natl. Acad. Sci. USA 83:4804–4808.PubMedGoogle Scholar
  12. Baccetti, B., 1982, The evolution of the sperm tail, Symp. Soc. Exp. Biol. 35:521–532.PubMedGoogle Scholar
  13. Baccetti, B., 1985, Evolution of the sperm tail, in: Biology of Fertilization, Volume 2 (C.B. Metz and A. Monroy, eds.), Academic Press, Orlando, pp. 3–58.Google Scholar
  14. Bardele, C.F., 1981, Functional and phylogenetic aspects of the ciliary membrane: A comparative freezefracture study, BioSystems 14:403–421.PubMedGoogle Scholar
  15. Bell, C.W., and Gibbons, I.R., 1982, Structure of the dynein-1 outer arm in sea urchin sperm flagella. II. Analysis by proteolytic cleavage, J. Biol. Chem. 257:516–522.PubMedGoogle Scholar
  16. Bessen, M., Fay, R.B., and Witman, G.B., 1980, Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas, J. Cell Biol. 86:446–455.PubMedGoogle Scholar
  17. Bishop, D.W., 1962, Sperm motility, Physiol. Rev. 42:1–59.PubMedGoogle Scholar
  18. Blum, J.J., 1971, Existence of a breaking point in cilia and flagella, J. Theor. Biol. 33:257–263.PubMedGoogle Scholar
  19. Bonini, N.M., and Nelson, D.L., 1988, Differential regulation of Paramecium ciliary motility by cAMP and cGMP, J. Cell Biol. 106:1615–1623.PubMedGoogle Scholar
  20. Bonini, N.M., Gustin, M.C., and Nelson, D.L., 1986, Regulation of ciliary motility by membrane potential in Paramecium: A role for cyclic AMP, Cell Motil. Cytoskel. 6:256–272.Google Scholar
  21. Bray, D., Heath, J., and Moss, D., 1986, The membrane-associated “cortex” of animal cells: Its structure and mechanical properties, J. Cell Sci. Suppl. 4:71–88.PubMedGoogle Scholar
  22. Brokaw, C.J., 1961, Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella, Exp. Cell Res. 22:151–162.Google Scholar
  23. Brokaw, C.J., 1985, Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility, Ann. N.Y. Acad. Sci. 438:132–141.Google Scholar
  24. Brokaw, C.J., 1986, Future directions for studies of mechanisms for generating flagellar bending waves, J. Cell Sci. Suppl. 4:103–113.PubMedGoogle Scholar
  25. Brokaw, C.J., 1987a, A lithium-sensitive regulator of sperm flagellar oscillation is activated by cAMPdependent phosphorylation, J. Cell Biol. 105:1789–1798.PubMedGoogle Scholar
  26. Brokaw, C.J., 1987b, Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation, J. Cell Biochem. 35:175–184.PubMedGoogle Scholar
  27. Brokaw, C.J., 1989a, Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella, Science 243:1593–1596.PubMedGoogle Scholar
  28. Brokaw, C.J., 1989b, Operation and regulation of the flagellar oscillator, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 25–35.Google Scholar
  29. Brokaw, C.J., and Luck, D.J.L., 1985, Bending patterns of Chlamydomonas flagella. III.A radial spoke head deficient mutant and a central pair deficient mutant, Cell Motil. 5:195–208.Google Scholar
  30. Brokaw, C.J., Luck, D.J.L., and Huang, B., 1982, Analysis of the movement of Chlamydomonas flagella. The function of the radial spoke system is revealed by comparison of wild-type and mutant flagella, J. Cell Biol. 92:722–732.PubMedGoogle Scholar
  31. Cavalier-Smith, T., 1975, The origin of nuclei and of eukaryotic cells, Nature 256:463–468.Google Scholar
  32. Cavalier-Smith, T., 1982, The evolutionary origin and phylogeny of eukaryote flagella, Symp. Soc. Exp. Biol. 35:465–493.PubMedGoogle Scholar
  33. Chang, X.-j., and Piperno, G., 1987, Cross-reactivity of antibodies specific for flagellar tektin and intermediate filament subunits, J. Cell Biol. 104:1563–1568.PubMedGoogle Scholar
  34. Chasey, D., 1972, Further observations on the ultrastructure of cilia from Tetrahymena pyriformis, Exp. Cell Res. 74:471–479.PubMedGoogle Scholar
  35. Christen, R., Schackmann, R.W., and Shapiro, B.M., 1982, Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus, J. Biol. Chem. 257: 14881–14890.PubMedGoogle Scholar
  36. Cooper, T.G., 1984, The onset and maintenance of hyperactivated motility of spermatozoa from the mouse, Gamete Res. 9:55–74.Google Scholar
  37. Dallai, R., Bernini, F., and Giusti, F., 1973, Interdoublet connections in the sperm flagellar complex of Sciara, J. Submicrosc. Cytol. 5:137–145.Google Scholar
  38. Dentler, W.L., 1981, Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol. 72:1–47.PubMedGoogle Scholar
  39. Dentler, W.L., 1987, Cilia and flagella, Int. Rev. Cytol. Suppl. 17:391–456.Google Scholar
  40. Dustin, P., 1984, Microtubules, 2nd ed., Springer-Verlag, Berlin.Google Scholar
  41. Dutcher, S.K., 1986, Genetic properties of linkage group XIX in Chlamydomonas reinhardtii, in: Extrachromosomal Elements in Lower Eukaryotes (R.B. Wickner, A. Hinnelbusch, A.M. Lambowitz, I.C. Gunsalu, and A. Hollaender, eds.), Plenum Press, New York, pp. 303–325.Google Scholar
  42. Dutcher, S.K., Huang, B., and Luck, D.J.L., 1984, Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtti, J. Cell Biol. 98:229–236.PubMedGoogle Scholar
  43. Dute, R., and Kung, C., 1978, Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia, J. Cell Biol. 78:451–464.PubMedGoogle Scholar
  44. Eakin, R.M., 1972, Structure of invertebrate photoreceptors, in: Handbook of Sensory Physiology, Volume VII/1 (H.J.A. Dartnall, ed.), Springer-Verlag, Berlin, pp. 625–684.Google Scholar
  45. Eckert, R., and Brehm, P., 1979, Ionic mechanisms of excitation in Paramecium, Annu. Rev. Biophys. Bioeng. 8:353–383.PubMedGoogle Scholar
  46. Eckert, R., Randall, D., and Augustine, G., 1988, Animal Physiology, 3rd ed., Freeman, San Francisco.Google Scholar
  47. Escalier, D., Jouannet, P., and David, G., 1982, Abnormalities of the ciliary axonemal complex in children: An ultrastructural and cinetic study in a series of 34 cases, Biol. Cell 44:271–282.Google Scholar
  48. Fawcett, D.W., 1986, Bloom and Fawcett: A Textbook of Histology, 11th ed., Saunders, Philadelphia.Google Scholar
  49. Friend, D.S., Orci, L., Perrelet, A., and Yanagimachi, R., 1977, Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa, J. Cell Biol. 74:561–577.PubMedGoogle Scholar
  50. Garbers, D.L., 1981, The elevation of cyclic AMP concentrations in flagellaless sea urchin sperm heads, J. Biol. Chem. 256:620–624.PubMedGoogle Scholar
  51. Garbers, D.L., Tubb, D.J., and Hyne, R.V., 1982, A requirement of bicarbonate for Ca2 + -induced elevations of cyclic AMP in guinea pig spermatozoa, J. Biol. Chem. 257:8980–8984.PubMedGoogle Scholar
  52. Gatti, J.-L., and Christen, R., 1985, Regulation of internal pH of sea urchin sperm. A role for the Na/K pump, J. Biol. Chem. 260:7599–7602.Google Scholar
  53. Geneser, F., 1986, Textbook of Histology, Munksgaard, Copenhagen.Google Scholar
  54. Gibbons, I.R., 1961, The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc, J. Biophys. Biochem. Cytol. 11:179–205.PubMedGoogle Scholar
  55. Gibbons, I.R., 1963, Studies on the protein components of cilia from Tetrahymena pyriformis, Proc. Natl. Acad. Sci. USA 50:1002–1010.PubMedGoogle Scholar
  56. Gibbons, I.R., 1965, Chemical dissection of cilia, Arch. Biol. 76:317–352.Google Scholar
  57. Gibbons, I.R., and Grimstone, A.V., 1960, On the flagellar structure in certain flagellates, J. Biophys. Biochem. Cytol. 7:697–716.PubMedGoogle Scholar
  58. Gilula, N.B., and Satir, P., 1972, The ciliary necklace. A ciliary membrane specialization, J. Cell Biol. 53: 494–509.Google Scholar
  59. Gitelman, S.E., and Witman, G.B., 1980, Purification of calmodulin from Chlamydomonas: Calmodulin occurs in cell bodies and flagella, J. Cell Biol. 87:764–770.PubMedGoogle Scholar
  60. Goodenough, U.W., and Heuser, J.E., 1982, The substructure of the outer dynein arm, J. Cell Biol. 95:798–815.PubMedGoogle Scholar
  61. Goodenough, U.W., and Heuser, J.E., 1985, Substructure of inner dynein arms, radial spokes, and the central pair projection complex of cilia and flagella, J. Cell Biol. 100:2008–2018.PubMedGoogle Scholar
  62. Gray, J., 1928, Ciliary Movement, Cambridge University Press, London.Google Scholar
  63. Hansen, J., and Huxley, H.E., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol. 9:228–264.Google Scholar
  64. Hartfiel, G., and Amrhein, N., 1976, The action of methylxanthines on motility and growth of Chlamydomonas reinhardtii and other flagellated algae. Is cyclic AMP involved? Biochem. Physiol. Pflanz. 169:S531–S556.Google Scholar
  65. Hasegawa, E., Hayashi, H., Asakura, S., and Kamiya, R., 1987, Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of cAMP-dependent phosphorylation, Cell Motil. Cytoskel. 8:302–311.Google Scholar
  66. Hoops, H.J., and Witman, G.B., 1983, Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella, J. Cell Biol. 97:902–908.PubMedGoogle Scholar
  67. Hoops, H.J., and Witman, G.B., 1985, Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum, J. Cell Biol. 100:297–309.PubMedGoogle Scholar
  68. Hoops, H.J., Wright, R.L., Jarvik, J.W., and Witman, G.B., 1984, Flagellar waveforms and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers, J. Cell Biol. 98:818–824.PubMedGoogle Scholar
  69. Hopkins, J.M., 1970, Subsidiary components of the flagella of Chlamydomonas reinhardii, J. Cell Sci. 7:823–839.PubMedGoogle Scholar
  70. Horridge, G.A., 1965, Macrocilia with numerous shafts from the lips of the ctenophore Beroe, Proc. R. Soc. London B Ser. 162:351–364.Google Scholar
  71. Hoskins, D.D., Brandt, H., and Acott, T.S., 1978, Initiation of sperm motility in the mammalian epididymis, Fed. Proc. 37:2534–2542.PubMedGoogle Scholar
  72. Huang, B., Ramanis, Z., and Luck, D.J.L., 1982, Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function, Cell 28:115–124.PubMedGoogle Scholar
  73. Huang, B., Mengersen, A., and Lee, V.D., 1988, Molecular cloning of cDNA for caltractin, a basal bodyassociated Ca2 + -binding protein: Homology in its protein sequence with calmodulin and the yeast CDC31 gene product, J. Cell Biol. 107:133–140.PubMedGoogle Scholar
  74. Huber, M.E., Wright, W.G., and Lewin, R.A., 1986, Divalent cations and flagellar autotomy in Chlamydomonas reinhardtii (Volvocales, Chlorophyta), Phycologia 25:408–411.Google Scholar
  75. Hudspeth, A.J., 1985, The cellular basis of hearing: The biophysics of hair cells, Science 230:745–752.PubMedGoogle Scholar
  76. Hudspeth, A.J., and Jacobs, R., 1979, Stereocilia mediate transduction in vertebrate hair cells, Proc. Natl. Acad. Sci. USA 76:1506–1509.PubMedGoogle Scholar
  77. Ishijima, S., and Mohri, H., 1985, A quantitative description of flagellar movement in golden hamster spermatozoa, J. Exp. Biol. 114:463–475.PubMedGoogle Scholar
  78. Ishijima, S., and Witman, G.B., 1987, Flagellar movement of intact and demembranated reactivated ram spermatozoa, Cell Motil. Cytoskel. 8:375–391.Google Scholar
  79. Ishijima, S., McCracken, J.A., and Witman, G.B., 1986, Activation of intact and demembranated ram testicular spermatozoa and spermatids, Dev. Growth Differ. 28:42.Google Scholar
  80. Izumi, A., and Nakaoka, Y., 1987, cAMP-mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium, Cell Motil. Cytoskel. 7:154–159.Google Scholar
  81. Jarosch, R., and Fuchs, B., 1975, Zur fibrillenrotation in der Synura - Geissel, Protoplasma 85:285–290.PubMedGoogle Scholar
  82. Jeffery, P.K., and Reid, L., 1975, New features of rat airway epithelium; a quantitative and electron microscopic study, J. Anat. 120:295–320.PubMedGoogle Scholar
  83. Johnson, C.H., Clapper, D.L., Winkler, M.W., Lee, H.C., and Epel, D., 1983, A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH, Dev. Biol. 98:493–501.PubMedGoogle Scholar
  84. Johnson, K.A., Marchese-Ragona, S.P., Clutter, D.B., Holzbaur, E.L.F., and Chilcote, T.J., 1986, Dynein structure and function, J. Cell Sci. Suppl. 5:189–196.PubMedGoogle Scholar
  85. Kamiya, R., 1982, Extension and rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella, Cell Motil. Suppl. 1:169–173.Google Scholar
  86. Kamiya, R., and Okagaki, T., 1986, Cyclical bending of the two outer doublet microtubules in frayed axonemes of Chlamydomonas, Cell Motil. Cytoskel. 6:580–585.Google Scholar
  87. Kamiya, R., and Witman, G.B., 1984, Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas, J. Cell Biol. 98:97–107.PubMedGoogle Scholar
  88. Kamiya, R., Nagai, R., and Nakamura, S., 1982, Rotation of the central pair microtubules in Chlamydomonas flagella, in: Biological Functions of Microtubules and Related Structures (H. Sakai, H. Mohri, and G.G. Borisy, eds.), Academic Press, New York, pp. 189–198.Google Scholar
  89. Katz, D.F., and Yanagimachi, R., 1981, Movement characteristics of hamster and guinea pig spermatozoa upon attachment to the zona pellucida, Biol. Reprod. 25:785–791.PubMedGoogle Scholar
  90. Katz, D.F., Drobnis, E.Z., and Overstreet, J.W., 1989, Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments, Gamete Research 22:443–469.PubMedGoogle Scholar
  91. Kauer, J.S., 1983, Surface morphology of olfactory receptors, J. Submicrosc. Cytol. 15:167–171.PubMedGoogle Scholar
  92. Kelly, D.E., Wood, R.L., and Enders, A.C., 1984, Bailey’s Textbook of Microscopic Anatomy, 18th ed., Williams & Wilkins, Baltimore.Google Scholar
  93. Kennedy, J.R., Jr., and Brittingham, E., 1968, Fine structure changes during chloral hydrate deciliation of Paramecium caudatum, J. Ultrastruct. Res. 22:530–545.PubMedGoogle Scholar
  94. King, S.M., and Witman, G.B., 1988, Structure of the a and 0 heavy chains of the outer arm dynein from Chlamydomonas flagella. Location of epitopes and protease-sensitive sites, J. Biol. Chem. 263:9244–9255.PubMedGoogle Scholar
  95. Kuzirian, A.M., Alkon, D.L., and Harris, L.G., 1981, An infraciliary network in statocyst hair cells, J. Neurocytol. 10:497–514.PubMedGoogle Scholar
  96. Lancet, D., 1988, Molecular components of olfactory reception and transduction, in: Molecular Neurobiology of the Olfactory System (F.L. Margolis and T.V. Getchell, eds.), Plenum Press, New York, pp. 25–50.Google Scholar
  97. Laverack, M.S., and Ardill, D.J., 1965, The innervation of the aesthetasc hairs of Panulirus argus, Q.J. Microsc. Sci. 106:45–60.Google Scholar
  98. Lee, H.C., 1984, A membrane potential-sensitive Na+-H+ exchange system in flagella isolated from sea urchin spermatozoa, J. Biol. Chem. 259:15315–15319.PubMedGoogle Scholar
  99. Lee, H.C., Johnson, C.H., and Epel, D., 1983, Changes of internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm, Dev. Biol. 95:31–45.PubMedGoogle Scholar
  100. Lewin, R.A., and Lee, K.W., 1985, Autotomy of algal flagella: Electron microscope studies of Chlamydomonas (Chlorophyceae) and Tetraselmis (Prasinophyceae), Phycologia 24:311–316.Google Scholar
  101. L’Hernault, S.W., and Rosenbaum, J.L., 1983, Chlamydomonas a-tubulin is posttranslationally modified in the flagella during flagellar assembly, J. Cell Biol 97:258–263.PubMedGoogle Scholar
  102. L’Hernault, S.W., and Rosenbaum, J.L., 1985, Reversal of the posttranslational modification on Chlamydomonas flagellar a-tubulin occurs during flagellar resorption, J. Cell Biol 100:457–462.PubMedGoogle Scholar
  103. Linck, R.W., Amos, L.A., and Amos, W.B., 1985, Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy, J. Cell Biol 100:126–135.PubMedGoogle Scholar
  104. Luck, D.J.L., 1984, Genetic and biochemical dissection of the eucaryotic flagellum, J. Cell Biol 98:789–794.PubMedGoogle Scholar
  105. Luck, D.J.L., and Piperno, G., 1989, Dynein armmutants of Chlamydomonas reinhardtii, in Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 49–60.Google Scholar
  106. Maas, D.H.A., Storey, B.T., and Mastroianni, L., Jr., 1977, Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatto), Fertil. Steril. 28:981–985.PubMedGoogle Scholar
  107. Machemer, H., 1985, Mechanoresponses in protozoa, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P.S. Song, eds.), Plenum Press, New York, pp. 179–209.Google Scholar
  108. Machemer, H., 1986, Electromotor coupling in cilia, in: Membrane Control of Cellular Activity, Volume 33 (H.C. Luttgau, ed.), Fortschritte der Zoologie, Fischer Verlag, Stuttgart, pp. 205–250.Google Scholar
  109. Machemer, H., and Machemer-Rohnisch, S., 1983, Tail cilia of Paramecium passively transmit mechanical stimuli to the cell soma, J. Submicrosc. Cytol 15:281–284.Google Scholar
  110. Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol (London) 296:49–60.Google Scholar
  111. Macnab, R.M., 1987a, Flagella, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol 1. (J.L. Ingraham, D.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.) American Society for Microbiology, Washington, D.C., pp. 70–83.Google Scholar
  112. Macnab, R.M., 1987b, Motility and Chemotaxis, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Volume 1 (J.L. Ingraham, D.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 732–759.Google Scholar
  113. Maihle, N.J., Dedman, J.R., Means, A.R., Chafouleas, J.G., and Satir, B.H., 1981, Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia, J. Cell Biol 89:695–699.PubMedGoogle Scholar
  114. Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven.Google Scholar
  115. Melkonian, M., 1978, Structure and significance of cruciate flagellar root systems in green algae: Comparative investigations in species of Chlorosarcinopsis (Chlorosarcinales), Plant Syst. Evol. 130:265–292.Google Scholar
  116. Melkonian, M., 1980, Ultrastructural aspects of basal body associated fibrous structures in green algae: A critical review, BioSystems 12:85–104.PubMedGoogle Scholar
  117. Melkonian, M., Robenek, H., and Rassat, J., 1982, Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis, J. Cell Sci. 55:115–135.PubMedGoogle Scholar
  118. Menco, B., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat, and dog. I.A general survey, Cell Tissue Res 207:183–209.PubMedGoogle Scholar
  119. Mohri, H., and Yanagimachi, R., 1980, Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa, Exp. Cell Res. 127:191–196.PubMedGoogle Scholar
  120. Moran, D.T., Rowley, J.C., Zill, S.N., and Varela, F.G., 1976, The mechanism of sensory transduction in a mechano-receptor: Functional stages in campaniform sensilla during the molting cycle, J. Cell Biol. 71: 832–847.PubMedGoogle Scholar
  121. Morisawa, M., 1987, The process of initiation of sperm motility at spawning and ejaculation, in: New Horizons in Sperm Cell Research (H. Mohri, ed.), Japan Sci. Soc. Press, Tokyo, pp. 137–157.Google Scholar
  122. Morisawa, M., and Okuno, M., 1982, Cyclic AMP induces maturation of trout sperm axoneme to initiate motility, Nature 295:703–704.PubMedGoogle Scholar
  123. Moss, A.B., and Tamm, S.L., 1987, A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates, Proc. Natl. Acad. Sci. USA 84:6476–6480.PubMedGoogle Scholar
  124. Naitoh, Y., and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation, Science 164:963–965.PubMedGoogle Scholar
  125. Naitoh, Y., and Kaneko, H., 1973, Control of ciliary activities by adenosine-triphosphate and divalent cations in Triton-extracted models of Paramecium caudatum, J. Exp. Biol. 58:657–676.Google Scholar
  126. Nakamura, T., and Gold, G.H., 1987, A cyclic nucleotide-gated conductance in olfactory receptor cilia, Nature 325:442–444.PubMedGoogle Scholar
  127. Nakaoka, Y., and Ooi, H., 1985, Regulation of ciliary reversal in Triton-extracted Paramecium by calcium and cyclic adenosine monophosphate, J. Cell Sci. 77:185–195.PubMedGoogle Scholar
  128. Olson, G.E., and Linck, R.W., 1977, Observations on the structural components of flagellar axonemes and central pair microtubules from rat sperm, J. Ultrastruct. Res. 61:21–43.PubMedGoogle Scholar
  129. Omoto, C.K., and Kung, C., 1979, The pair of central tubules rotates during ciliary beat in Paramecium, Nature 279:532–534.PubMedGoogle Scholar
  130. Omoto, C.K., and Kung, C., 1980, Rotation and twist of the central-pair microtubules in the cilia of Paramecium, J. Cell Biol. 87:33–46.PubMedGoogle Scholar
  131. Omoto, C.K., and Witman, G.B., 1981, Functionally significant central-pair rotation in a primitive eukaryotic flagellum, Nature 290:708–710.PubMedGoogle Scholar
  132. Otter, T., 1989, Calmodulin and the control of flagellar movement, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 281–298.Google Scholar
  133. Otter, T., Satir, B.H., and Satir, P., 1984, Trifluoperazine-induced changes in swimming behavior of Paramecium: Evidence for two sites of drug action, Cell Motil. 4:249–267.PubMedGoogle Scholar
  134. Pace, U., Harski, E., Solomon, Y., and Lancet, D., 1985, Odorant-sensitive adenylate cyclase may mediate olfactory reception, Nature 316:255–258.PubMedGoogle Scholar
  135. Paschal, B.M., King, S.M., Moss, A.G., Collins, C.A., Vallee, R.B., and Witman, G.B., 1987, Isolated flagellar outer arm dynein translocates brain microtubules in vitro, Nature 330:672–674.PubMedGoogle Scholar
  136. Pasquale, S.M., and Goodenough, U.W., 1987, Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii, J. Cell Biol. 105:2279–2292.PubMedGoogle Scholar
  137. Perkins, L., Hedgecock, J.N., Thomson, J.N., and Culotti, J., 1986, Mutant sensory cilia in Caenorhabditis elegans, Dev. Biol. 117:456–487.PubMedGoogle Scholar
  138. Pickett-Heaps, J., 1974, Evolution of mitosis and the eukaryote condition, BioSystems 6:37–45.PubMedGoogle Scholar
  139. Piperno, G., 1988, Isolation of a sixth dynein subunit adenosine triphosphatase of Chlamydomonas axonemes, J. Cell Biol. 106:133–140.PubMedGoogle Scholar
  140. Piperno, G., and Luck, D.J.L., 1981, Inner arm dyneins from flagella of Chlamydomonas reinhardtii, Cell 27: 331–340.PubMedGoogle Scholar
  141. Pitelka, D.R., 1974, Basal bodies and root structures, in: Cilia and Flagella (M.A. Sleigh, ed.), Academic Press, New York, pp. 437–469.Google Scholar
  142. Poole, A.C., Flint, M.H., and Beaumont, B.W., 1985, Analysis of the morphology and function of primary cilia in connective tissues: A cellular cybernetic probe? Cell Motil. 5:175–193.PubMedGoogle Scholar
  143. Ramanis, Z., and Luck, D.J.L., 1986, Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA 83:423–426.PubMedGoogle Scholar
  144. Rhein, L.D., and Cagan, R.H., 1980, Biochemical studies of olfaction: Isolation, characterization, and odorant binding activity of cilia from rainbow trout olfactory rosettes, Proc. Natl. Acad. Sci. USA 77:4412–4416.PubMedGoogle Scholar
  145. Ringo, D.L., 1967a, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol. 33:543–571.PubMedGoogle Scholar
  146. Ringo, D.L., 1967b, The arrangement of subunits in flagellar fibers, J. Ultrastruct. Res. 17:266–277.PubMedGoogle Scholar
  147. Rohlich, P., 1975, The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia, Cell Tissue Res. 161:421–430.PubMedGoogle Scholar
  148. Roth, K.E., Rieder, C.L., and Bowser, S.S., 1988, Flexible substratum technique for viewing cells from the side: Some in vivo properties of primary (9+0) cilia in cultured kidney epithelia, J. Cell Sci. 89: 457–466.PubMedGoogle Scholar
  149. Rubin, R.W., and Filner, P., 1973, Adenosine 3’,5’-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration, J. Cell Biol. 56:628–635.PubMedGoogle Scholar
  150. Sale, W.S., and Fox, L.A., 1988, Isolated (3-heavy chain subunit of dynein translocates microtubules in vitro, J. Cell Biol. 107:1793–1797.PubMedGoogle Scholar
  151. Sale, W.S., and Satir, P., 1977, Direction of active sliding of microtubules in Tetrahymena cilia, Proc. Natl. Acad. Sci. USA 74:2045–2049.PubMedGoogle Scholar
  152. Salisbury, J.L., Sanders, M.A., and Harpst, L., 1987, Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii, J. Cell Biol. 105:1799–1805.PubMedGoogle Scholar
  153. Sanders, M.A., and Salisbury, J.L., 1989, Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardii, J. Cell Biol. 108:1751–1760.PubMedGoogle Scholar
  154. Satir, B., Sale, W.S., and Satir, P., 1976, Membrane renewal after dibucaine deciliation of Tetrahymena, Exp. Cell Res. 97:83–91.PubMedGoogle Scholar
  155. Satir, P., 1965, Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of filaments in motility, J. Cell Biol. 26:805–834.PubMedGoogle Scholar
  156. Satir, P., 1968, Studies on cilia. III. Further studies on the cilium tip and a sliding filament model of ciliary motility, J. Cell Biol. 39:77–94.PubMedGoogle Scholar
  157. Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A., and Avolio, J., 1981, The mechanochemical cycle of the dynein arm, Cell Motil. 1:303–327.PubMedGoogle Scholar
  158. Schmidt, J.A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii, Nature 262:713–715.PubMedGoogle Scholar
  159. Segal, R.A., and Luck, D.J., 1985, Phosphorylation in isolated Chlamydomonas axonemes: A phosphoprotein may mediate the Ca2+-dependent photophobic response, J. Cell Biol. 101:1702–1712.PubMedGoogle Scholar
  160. Segal, R.A., Huang, B., Ramanis, Z., and Luck, D.J.L., 1984, Mutant strains of Chlamydomonas reinhardtii that move backwards only, J. Cell Biol. 98:2026–2034.PubMedGoogle Scholar
  161. Shapiro, B.M., and Tombes, R.M., 1985, A biochemical pathway for a cellular behaviour: pH,, phosphorylcreatine shuttles, and sperm motility, Bio Essays 3:100–103.Google Scholar
  162. Shingyoji, C., Murakami, A., and Takahashi, K., 1977, Local reactivation of Triton-extracted flagella by iontophoretic application of ATP, Nature 265:269–270.PubMedGoogle Scholar
  163. Sleigh, M.A., 1962, The Biology of Cilia and Flagella, Macmillan Co., New York.Google Scholar
  164. Sleigh, M.A., 1974, Introduction, in: Cilia and Flagella (M.A. Sleigh, ed.), Academic Press, New York, pp. 1–7.Google Scholar
  165. Sleigh, M.A., 1977, The nature and action of respiratory tract cilia, in: Respiratory Defense Mechanisms, Part 1, (J.D. Brain, D.F. Procter, and L.M. Reid, eds.), Dekker, New York, pp. 247–288.Google Scholar
  166. Sleigh, M.A., and Silvester, N.R., 1983, Anchorage functions of the basal apparatus of cilia, J. Submicrosc. Cytol. 15:101–104.Google Scholar
  167. Stavis, R.L., and Hirschberg, R., 1973, Phototaxis in Chlamydomonas reinhardtii, J. Cell Biol. 59:367–377.PubMedGoogle Scholar
  168. Stephens, R.E., 1970, Isolation of nexin—the linkage protein responsible for maintenance of the nine-fold configuration of flagellar axonemes, Biol. Bull. (Woods Hole, Mass.) 139:438. (Abstr.).Google Scholar
  169. Stephens, R.E., and Stommel, E.W., 1989, The role of cAMP in ciliary and flagellar motility, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 299–316.Google Scholar
  170. Stommel, E.W., 1984, Calcium activation of mussel gill abfrontal cilia, J. Comp. Physiol. A 155:457–469.Google Scholar
  171. Stommel, E.W., and Stephens, R.E., 1985, Cyclic AMP and calcium in the differential control of Mytilus gill cilia, J. Comp. Physiol. A 157:451–459.PubMedGoogle Scholar
  172. Stommel, E.W., Stephens, R.E., and Alkon, D.L., 1980, Motile statocyst cilia transmit rather than directly transduce mechanical stimuli, J. Cell Biol. 87:652–662.PubMedGoogle Scholar
  173. Stryer, L., 1986, Cyclic GMP cascade of vision, Annu. Rev. Neurosci. 9:87–119.PubMedGoogle Scholar
  174. Stubblefield, E., and Brinkley, B.R., 1967, Architecture and function of the mammalian centriole, in: Formation and Fate of Cell Organelles (K.B. Warren, ed.) Academic Press, New York, pp. 175–218.Google Scholar
  175. Summers, K.E., and Gibbons, I.R., 1971, Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci. USA 68:3092–3096.PubMedGoogle Scholar
  176. Summers, K.E., and Gibbons, I.R., 1973, Effects of trypsin digestion on flagellar structures and their relationship to motility, J. Cell Biol. 58:618–629.PubMedGoogle Scholar
  177. Tamm, S.L., 1988a, Calcium activation of macrocilia in the ctenophore Beroë, J. Comp. Physiol. A 163:23–31.PubMedGoogle Scholar
  178. Tamm, S.L., 1988b, Iontophoretic localization of Ca-sensitive sites controlling activation of ciliary beating in macrocilia of Beroë. The ciliary rete, Cell Motil. Cytoskel. 11:126–138.Google Scholar
  179. Tamm, S.L., and Horridge, G.A., 1970, The relationship between the orientation of the central fibrils and the direction of beat in cilia of Opalina, Proc. R. Soc. London Ser. B 175:219–233.Google Scholar
  180. Tamm, S.L., and Tamm, S., 1981, Ciliary reversal without rotation of axonemal structures in ctenophore comb plates, J. Cell Biol. 89:495–509.PubMedGoogle Scholar
  181. Tash, J.S., and Means, A.R., 1983, Cyclic adenosine 3’,5’ monophosphate, calcium, and protein phosphorylation in flagellar motility, Biol. Reprod. 28:75–104.PubMedGoogle Scholar
  182. Tilney, L.G., Bryan, J., Bush, D.J., Fujiwara, K., Mooseker, M.S., Murphy, D.B., and Snyder, D.H., 1973, Microtubules: Evidence for 13 protofilaments, J. Cell Biol. 59:267–275.PubMedGoogle Scholar
  183. Tilney, L.G., Tilney, M.S., and Cotanche, D.A., 1988, Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated, J. Cell Biol. 106:355–365.PubMedGoogle Scholar
  184. Trimmer, J.S., and Vacquier, V.D., 1986, Activation of sea urchin gametes, Annu. Rev. Cell Biol. 2:1–26.PubMedGoogle Scholar
  185. Tucker, R.W., Pardee, A.B., and Fujiwara, K., 1979, Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells, Cell 17:527–535.PubMedGoogle Scholar
  186. Vale, R.D., and Toyoshima, Y.Y., 1988, Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia, Cell 52:459–469.PubMedGoogle Scholar
  187. Verdugo, P., 1980, Ca2 +-dependent hormonal stimulation of ciliary activity, Nature 283:764–765.PubMedGoogle Scholar
  188. Verdugo, P., 1982, Introduction: Mucociliary function in mammalian epithelia, Cell Motil. Suppl. 1:1–5.Google Scholar
  189. Verdugo, P., Johnson, N.T., and Tam, P.Y., 1980a, Beta-adrenergic stimulation of respiratory ciliary activity, J. Appl. Physiol. 48:868–871.PubMedGoogle Scholar
  190. Verdugo, P., Lee, W.I., Halbert, S.A., Blandau, R.J., and Tam, P.Y., 1980b, A stochastic model for oviductal egg transport, Biophys. J. 29:257–270.PubMedGoogle Scholar
  191. Verdugo, P., Rumery, R.E., and Tam, P.Y., 1980c, Hormonal control of oviductal ciliary activity: Effect of prostaglandins, Fertil. Steril. 33:193–196.PubMedGoogle Scholar
  192. Villalon, M., and Verdugo, P., 1982, Hormonal regulation of ciliary function in the oviduct: The effect of betaadrenergic agonists, Cell Motil. Suppl. 1:59–65.Google Scholar
  193. Walter, M.F., and Schultz, J.E., 1981, Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia, Eur. J. Cell Biol. 24:97–100.PubMedGoogle Scholar
  194. Ward, S., Thomson, N., White, J.G., and Brenner, S., 1975, Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans, J. Comp. Neurol. 160:313–338.PubMedGoogle Scholar
  195. Warner, F.D., 1976, Ciliary inter-microtubule bridges, J. Cell Sci. 20:101–114.PubMedGoogle Scholar
  196. Warner, F.D., 1983, Organization of interdoublet links in Tetrahymena cilia, Cell Motil. 3:321–332.Google Scholar
  197. Warner, F.D., and Satir, P., 1973, The substructure of ciliary microtubules, J. Cell Sci. 12:313–326.PubMedGoogle Scholar
  198. Warner, F.D., and Satir, P., 1974, The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding, J. Cell Biol. 63:35–63.PubMedGoogle Scholar
  199. Warner, F.D., Mitchell, D.R., and Perkins, C.R., 1977, Structural conformation of the ciliary ATPase dynein, J. Mol. Biol. 114:367–384.PubMedGoogle Scholar
  200. Warner, F.D., Satir, P., and Gibbons, I.R. (eds.), 1989, Cell Movement, Volume 1, Liss, New York.Google Scholar
  201. Warr, J.R., McVittie, A., Randall, J., and Hopkins, J.M., 1966, Genetic control of flagellar structure in Chlamydomonas reinhardtii, Genet. Res. 7:335–351.Google Scholar
  202. Wheatley, D.N., 1982, The Centriole: A Central Enigma of Cell Biology, Elsevier, Amsterdam.Google Scholar
  203. Williams, N.E., and Luft, J.H., 1968, Nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena, J. Ultrastruct. Res. 25:271–292.PubMedGoogle Scholar
  204. Witman, G.B., 1989, Perspective: Composition and molecular organization of the dyneins, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 25–35.Google Scholar
  205. Witman, G.B., and Minervini, N., 1982, Dynein arm conformation and mechanochemical transduction in the eukaryotic flagellum, Symp. Soc. Exp. Biol. 35:203–224.PubMedGoogle Scholar
  206. Witman, G.B., Carlson, K., Berliner, J., and Rosenbaum, J.L., 1972, Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes, J. Cell Biol. 54:507–539.PubMedGoogle Scholar
  207. Witman, G.B., Fay, R., and Plummer, J., 1976, Chlamydomonas mutants: Evidence for the roles of specific axonemal components in flagellar movement, in: Cell Motility, Book C (R.D. Goldman, T.D. Pollard, and J.L. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harber, N.Y., pp. 969–986.Google Scholar
  208. Witman, G.B., Plummer, J., and Sander, G., 1978, Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components, J. Cell Biol. 76:729–747.PubMedGoogle Scholar
  209. Wolf, D.E., Hagopian, S.S., and Ishijima, S., 1986, Changes in sperm plasma membrane lipid diffusibility following hyperactivation during in vitro capacitation in the mouse, J. Cell Biol. 102:1372–1377.PubMedGoogle Scholar
  210. Wright, R.L., Salisbury, J., and Jarvik, J.W., 1985, A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation, J. Cell Biol. 101:1903–1912.PubMedGoogle Scholar
  211. Wunderlich, F., and Speth, V., 1972, Membranes in Tetrahymena. I. The cortical pattern, J. Ultrastruct. Res. 41:258–269.PubMedGoogle Scholar
  212. Yanagimachi, R., 1981, Mechanism of fertilization in mammals, in: Fertilization and Embryonic Development in Vitro (L. Mastroianni, Jr., and J.D. Biggers, eds.), Plenum Press, New York, pp. 81–182.Google Scholar
  213. Yanagimachi, R., 1988, Mammalian fertilization, in: The Physiology of Reproduction (E. Knobil, J. Neill, L.L. Ewing, G.S. Greenwald, C.L. Markert, and D.W. Pfaff, eds.), Raven Press, New York, pp. 135–185.Google Scholar
  214. Yanagimachi, R., and Usui, N., 1974, Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa, Exp. Cell Res. 89:161–174.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • George B. Witman
    • 1
  1. 1.Cell Biology Group and Male Fertility ProgramWorcester Foundation for Experimental BiologyShrewburyUSA

Personalised recommendations