Skip to main content

Introduction to Cilia and Flagella

  • Chapter
Ciliary and Flagellar Membranes

Abstract

Cilia and flagella of eukaryotes are generally long, whiplike appendages extending from the cell body; historically, the term flagellum has been used when these structures are present singly or in small numbers, whereas the term cilium has been used when the structures occur in larger numbers. Typically, a flagellum propagates nearly symmetrical bends from the base to the tip of the organelle, causing the fluid in which it is beating to flow parallel to the flagellar axis (Fig. 1). Cilia generally move with an asymmetrical beat consisting of an effective and a recovery stroke. During the effective stroke a large bend is formed at the base of the cilium, causing the cilium to slice rapidly through the medium; this is followed by the recovery stroke, during which the bend is propagated along the ciliary shaft until the cilium returns to the position it held before the beginning of the effective stroke. The result of this beat pattern is that fluid is moved parallel to the cell surface in the direction of the effective stroke (Fig. 1). Cilia and flagella are very similar if not identical in terms of their internal structures and mechanisms of movement; indeed, the flagella of many organisms can beat with both flagellar and ciliary type waveforms. Consequently, most of my general comments about these organelles may be applied equally well to either cilia or flagella. The eukaryotic flagellum should not be confused with the prokaryotic flagellum, which is a completely different structure having a different protein composition and a different mechanism of movement (see Macnab, 1987a,b, for reviews). The prokaryotic flagellum is an extracellular appendage, whereas the eukaryotic flagellum is an intracellular organelle, surrounded by an extension of the cell’s plasma membrane. It is, of course, the interesting and frequently unique properties of ciliary and flagellar membranes that are the raison d’être of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamek, G.D., Gesteland, R.C., Mair, R.G., and Oakley, B., 1984, Transduction physiology of olfactory receptor cilia, Brain Res. 310:87–97.

    PubMed  CAS  Google Scholar 

  • Adams, G.M.W., Huang, B., Piperno, G., and Luck, D.J.L., 1981, Central-pair microtubular complex of Chlamydomonas flagella: Polypeptide composition as revealed by analysis of mutants, J. Cell Biol. 91:69–76.

    PubMed  CAS  Google Scholar 

  • Afzelius, B., 1959, Electron microscopy of the sperm tail. Results obtained with a new fixative, J. Biophys. Biochem. Cytol. 5:269–278.

    CAS  Google Scholar 

  • Afzelius, B.A., 1976, A human syndrome caused by immotile cilia, Science 193:317–319.

    PubMed  CAS  Google Scholar 

  • Afzelius, B.A., 1979, The immotile cilia syndrome and other ciliary diseases, Int. Rev. Exp. Pathol. 19:1–43.

    PubMed  CAS  Google Scholar 

  • Afzelius, B.A., Camner, P., and Mossberg, B., 1978, On the function of cilia in the female reproductive tract, Fertil. Steril. 29:72–74.

    PubMed  CAS  Google Scholar 

  • Aiello, E.L., 1960, Factors affecting ciliary activity on the gill of the mussel Mytilus edulis, Physiol. Zool. 33: 120–135.

    CAS  Google Scholar 

  • Aiello, E., and Guideri, G., 1964, Nervous control of ciliary activity, Science 146:1692–1693.

    PubMed  CAS  Google Scholar 

  • Alkon, D.L., 1983, The role of statocyst sensory cilia in mechanotransduction, J. Submicrosc. Cytol. 15:145–150.

    Google Scholar 

  • Anderson, R.G.W., 1972, The three-dimensional structure of the basal body from the rhesus monkey oviduct, J. Cell Biol. 54:246–265.

    PubMed  CAS  Google Scholar 

  • Avolio, J., Glazzard, A.N., Holwill, M.E.J., and Satir, P., 1986, Structures attached to doublet microtubules of cilia: Computer modeling of thin-section and negative-stain stereo images, Proc. Natl. Acad. Sci. USA 83:4804–4808.

    PubMed  CAS  Google Scholar 

  • Baccetti, B., 1982, The evolution of the sperm tail, Symp. Soc. Exp. Biol. 35:521–532.

    PubMed  CAS  Google Scholar 

  • Baccetti, B., 1985, Evolution of the sperm tail, in: Biology of Fertilization, Volume 2 (C.B. Metz and A. Monroy, eds.), Academic Press, Orlando, pp. 3–58.

    Google Scholar 

  • Bardele, C.F., 1981, Functional and phylogenetic aspects of the ciliary membrane: A comparative freezefracture study, BioSystems 14:403–421.

    PubMed  CAS  Google Scholar 

  • Bell, C.W., and Gibbons, I.R., 1982, Structure of the dynein-1 outer arm in sea urchin sperm flagella. II. Analysis by proteolytic cleavage, J. Biol. Chem. 257:516–522.

    PubMed  CAS  Google Scholar 

  • Bessen, M., Fay, R.B., and Witman, G.B., 1980, Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas, J. Cell Biol. 86:446–455.

    PubMed  CAS  Google Scholar 

  • Bishop, D.W., 1962, Sperm motility, Physiol. Rev. 42:1–59.

    PubMed  CAS  Google Scholar 

  • Blum, J.J., 1971, Existence of a breaking point in cilia and flagella, J. Theor. Biol. 33:257–263.

    PubMed  CAS  Google Scholar 

  • Bonini, N.M., and Nelson, D.L., 1988, Differential regulation of Paramecium ciliary motility by cAMP and cGMP, J. Cell Biol. 106:1615–1623.

    PubMed  CAS  Google Scholar 

  • Bonini, N.M., Gustin, M.C., and Nelson, D.L., 1986, Regulation of ciliary motility by membrane potential in Paramecium: A role for cyclic AMP, Cell Motil. Cytoskel. 6:256–272.

    CAS  Google Scholar 

  • Bray, D., Heath, J., and Moss, D., 1986, The membrane-associated “cortex” of animal cells: Its structure and mechanical properties, J. Cell Sci. Suppl. 4:71–88.

    PubMed  CAS  Google Scholar 

  • Brokaw, C.J., 1961, Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella, Exp. Cell Res. 22:151–162.

    CAS  Google Scholar 

  • Brokaw, C.J., 1985, Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility, Ann. N.Y. Acad. Sci. 438:132–141.

    Google Scholar 

  • Brokaw, C.J., 1986, Future directions for studies of mechanisms for generating flagellar bending waves, J. Cell Sci. Suppl. 4:103–113.

    PubMed  CAS  Google Scholar 

  • Brokaw, C.J., 1987a, A lithium-sensitive regulator of sperm flagellar oscillation is activated by cAMPdependent phosphorylation, J. Cell Biol. 105:1789–1798.

    PubMed  CAS  Google Scholar 

  • Brokaw, C.J., 1987b, Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation, J. Cell Biochem. 35:175–184.

    PubMed  CAS  Google Scholar 

  • Brokaw, C.J., 1989a, Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella, Science 243:1593–1596.

    PubMed  CAS  Google Scholar 

  • Brokaw, C.J., 1989b, Operation and regulation of the flagellar oscillator, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 25–35.

    Google Scholar 

  • Brokaw, C.J., and Luck, D.J.L., 1985, Bending patterns of Chlamydomonas flagella. III.A radial spoke head deficient mutant and a central pair deficient mutant, Cell Motil. 5:195–208.

    CAS  Google Scholar 

  • Brokaw, C.J., Luck, D.J.L., and Huang, B., 1982, Analysis of the movement of Chlamydomonas flagella. The function of the radial spoke system is revealed by comparison of wild-type and mutant flagella, J. Cell Biol. 92:722–732.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T., 1975, The origin of nuclei and of eukaryotic cells, Nature 256:463–468.

    Google Scholar 

  • Cavalier-Smith, T., 1982, The evolutionary origin and phylogeny of eukaryote flagella, Symp. Soc. Exp. Biol. 35:465–493.

    PubMed  CAS  Google Scholar 

  • Chang, X.-j., and Piperno, G., 1987, Cross-reactivity of antibodies specific for flagellar tektin and intermediate filament subunits, J. Cell Biol. 104:1563–1568.

    PubMed  CAS  Google Scholar 

  • Chasey, D., 1972, Further observations on the ultrastructure of cilia from Tetrahymena pyriformis, Exp. Cell Res. 74:471–479.

    PubMed  CAS  Google Scholar 

  • Christen, R., Schackmann, R.W., and Shapiro, B.M., 1982, Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus, J. Biol. Chem. 257: 14881–14890.

    PubMed  CAS  Google Scholar 

  • Cooper, T.G., 1984, The onset and maintenance of hyperactivated motility of spermatozoa from the mouse, Gamete Res. 9:55–74.

    CAS  Google Scholar 

  • Dallai, R., Bernini, F., and Giusti, F., 1973, Interdoublet connections in the sperm flagellar complex of Sciara, J. Submicrosc. Cytol. 5:137–145.

    Google Scholar 

  • Dentler, W.L., 1981, Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol. 72:1–47.

    PubMed  CAS  Google Scholar 

  • Dentler, W.L., 1987, Cilia and flagella, Int. Rev. Cytol. Suppl. 17:391–456.

    Google Scholar 

  • Dustin, P., 1984, Microtubules, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Dutcher, S.K., 1986, Genetic properties of linkage group XIX in Chlamydomonas reinhardtii, in: Extrachromosomal Elements in Lower Eukaryotes (R.B. Wickner, A. Hinnelbusch, A.M. Lambowitz, I.C. Gunsalu, and A. Hollaender, eds.), Plenum Press, New York, pp. 303–325.

    Google Scholar 

  • Dutcher, S.K., Huang, B., and Luck, D.J.L., 1984, Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtti, J. Cell Biol. 98:229–236.

    PubMed  CAS  Google Scholar 

  • Dute, R., and Kung, C., 1978, Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia, J. Cell Biol. 78:451–464.

    PubMed  CAS  Google Scholar 

  • Eakin, R.M., 1972, Structure of invertebrate photoreceptors, in: Handbook of Sensory Physiology, Volume VII/1 (H.J.A. Dartnall, ed.), Springer-Verlag, Berlin, pp. 625–684.

    Google Scholar 

  • Eckert, R., and Brehm, P., 1979, Ionic mechanisms of excitation in Paramecium, Annu. Rev. Biophys. Bioeng. 8:353–383.

    PubMed  CAS  Google Scholar 

  • Eckert, R., Randall, D., and Augustine, G., 1988, Animal Physiology, 3rd ed., Freeman, San Francisco.

    Google Scholar 

  • Escalier, D., Jouannet, P., and David, G., 1982, Abnormalities of the ciliary axonemal complex in children: An ultrastructural and cinetic study in a series of 34 cases, Biol. Cell 44:271–282.

    Google Scholar 

  • Fawcett, D.W., 1986, Bloom and Fawcett: A Textbook of Histology, 11th ed., Saunders, Philadelphia.

    Google Scholar 

  • Friend, D.S., Orci, L., Perrelet, A., and Yanagimachi, R., 1977, Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa, J. Cell Biol. 74:561–577.

    PubMed  CAS  Google Scholar 

  • Garbers, D.L., 1981, The elevation of cyclic AMP concentrations in flagellaless sea urchin sperm heads, J. Biol. Chem. 256:620–624.

    PubMed  CAS  Google Scholar 

  • Garbers, D.L., Tubb, D.J., and Hyne, R.V., 1982, A requirement of bicarbonate for Ca2 + -induced elevations of cyclic AMP in guinea pig spermatozoa, J. Biol. Chem. 257:8980–8984.

    PubMed  CAS  Google Scholar 

  • Gatti, J.-L., and Christen, R., 1985, Regulation of internal pH of sea urchin sperm. A role for the Na/K pump, J. Biol. Chem. 260:7599–7602.

    CAS  Google Scholar 

  • Geneser, F., 1986, Textbook of Histology, Munksgaard, Copenhagen.

    Google Scholar 

  • Gibbons, I.R., 1961, The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc, J. Biophys. Biochem. Cytol. 11:179–205.

    PubMed  CAS  Google Scholar 

  • Gibbons, I.R., 1963, Studies on the protein components of cilia from Tetrahymena pyriformis, Proc. Natl. Acad. Sci. USA 50:1002–1010.

    PubMed  CAS  Google Scholar 

  • Gibbons, I.R., 1965, Chemical dissection of cilia, Arch. Biol. 76:317–352.

    CAS  Google Scholar 

  • Gibbons, I.R., and Grimstone, A.V., 1960, On the flagellar structure in certain flagellates, J. Biophys. Biochem. Cytol. 7:697–716.

    PubMed  CAS  Google Scholar 

  • Gilula, N.B., and Satir, P., 1972, The ciliary necklace. A ciliary membrane specialization, J. Cell Biol. 53: 494–509.

    CAS  Google Scholar 

  • Gitelman, S.E., and Witman, G.B., 1980, Purification of calmodulin from Chlamydomonas: Calmodulin occurs in cell bodies and flagella, J. Cell Biol. 87:764–770.

    PubMed  CAS  Google Scholar 

  • Goodenough, U.W., and Heuser, J.E., 1982, The substructure of the outer dynein arm, J. Cell Biol. 95:798–815.

    PubMed  CAS  Google Scholar 

  • Goodenough, U.W., and Heuser, J.E., 1985, Substructure of inner dynein arms, radial spokes, and the central pair projection complex of cilia and flagella, J. Cell Biol. 100:2008–2018.

    PubMed  CAS  Google Scholar 

  • Gray, J., 1928, Ciliary Movement, Cambridge University Press, London.

    Google Scholar 

  • Hansen, J., and Huxley, H.E., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol. 9:228–264.

    Google Scholar 

  • Hartfiel, G., and Amrhein, N., 1976, The action of methylxanthines on motility and growth of Chlamydomonas reinhardtii and other flagellated algae. Is cyclic AMP involved? Biochem. Physiol. Pflanz. 169:S531–S556.

    Google Scholar 

  • Hasegawa, E., Hayashi, H., Asakura, S., and Kamiya, R., 1987, Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of cAMP-dependent phosphorylation, Cell Motil. Cytoskel. 8:302–311.

    CAS  Google Scholar 

  • Hoops, H.J., and Witman, G.B., 1983, Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella, J. Cell Biol. 97:902–908.

    PubMed  CAS  Google Scholar 

  • Hoops, H.J., and Witman, G.B., 1985, Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum, J. Cell Biol. 100:297–309.

    PubMed  CAS  Google Scholar 

  • Hoops, H.J., Wright, R.L., Jarvik, J.W., and Witman, G.B., 1984, Flagellar waveforms and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers, J. Cell Biol. 98:818–824.

    PubMed  CAS  Google Scholar 

  • Hopkins, J.M., 1970, Subsidiary components of the flagella of Chlamydomonas reinhardii, J. Cell Sci. 7:823–839.

    PubMed  CAS  Google Scholar 

  • Horridge, G.A., 1965, Macrocilia with numerous shafts from the lips of the ctenophore Beroe, Proc. R. Soc. London B Ser. 162:351–364.

    Google Scholar 

  • Hoskins, D.D., Brandt, H., and Acott, T.S., 1978, Initiation of sperm motility in the mammalian epididymis, Fed. Proc. 37:2534–2542.

    PubMed  CAS  Google Scholar 

  • Huang, B., Ramanis, Z., and Luck, D.J.L., 1982, Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function, Cell 28:115–124.

    PubMed  CAS  Google Scholar 

  • Huang, B., Mengersen, A., and Lee, V.D., 1988, Molecular cloning of cDNA for caltractin, a basal bodyassociated Ca2 + -binding protein: Homology in its protein sequence with calmodulin and the yeast CDC31 gene product, J. Cell Biol. 107:133–140.

    PubMed  CAS  Google Scholar 

  • Huber, M.E., Wright, W.G., and Lewin, R.A., 1986, Divalent cations and flagellar autotomy in Chlamydomonas reinhardtii (Volvocales, Chlorophyta), Phycologia 25:408–411.

    CAS  Google Scholar 

  • Hudspeth, A.J., 1985, The cellular basis of hearing: The biophysics of hair cells, Science 230:745–752.

    PubMed  CAS  Google Scholar 

  • Hudspeth, A.J., and Jacobs, R., 1979, Stereocilia mediate transduction in vertebrate hair cells, Proc. Natl. Acad. Sci. USA 76:1506–1509.

    PubMed  CAS  Google Scholar 

  • Ishijima, S., and Mohri, H., 1985, A quantitative description of flagellar movement in golden hamster spermatozoa, J. Exp. Biol. 114:463–475.

    PubMed  CAS  Google Scholar 

  • Ishijima, S., and Witman, G.B., 1987, Flagellar movement of intact and demembranated reactivated ram spermatozoa, Cell Motil. Cytoskel. 8:375–391.

    CAS  Google Scholar 

  • Ishijima, S., McCracken, J.A., and Witman, G.B., 1986, Activation of intact and demembranated ram testicular spermatozoa and spermatids, Dev. Growth Differ. 28:42.

    Google Scholar 

  • Izumi, A., and Nakaoka, Y., 1987, cAMP-mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium, Cell Motil. Cytoskel. 7:154–159.

    CAS  Google Scholar 

  • Jarosch, R., and Fuchs, B., 1975, Zur fibrillenrotation in der Synura - Geissel, Protoplasma 85:285–290.

    PubMed  CAS  Google Scholar 

  • Jeffery, P.K., and Reid, L., 1975, New features of rat airway epithelium; a quantitative and electron microscopic study, J. Anat. 120:295–320.

    PubMed  CAS  Google Scholar 

  • Johnson, C.H., Clapper, D.L., Winkler, M.W., Lee, H.C., and Epel, D., 1983, A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH, Dev. Biol. 98:493–501.

    PubMed  CAS  Google Scholar 

  • Johnson, K.A., Marchese-Ragona, S.P., Clutter, D.B., Holzbaur, E.L.F., and Chilcote, T.J., 1986, Dynein structure and function, J. Cell Sci. Suppl. 5:189–196.

    PubMed  CAS  Google Scholar 

  • Kamiya, R., 1982, Extension and rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella, Cell Motil. Suppl. 1:169–173.

    Google Scholar 

  • Kamiya, R., and Okagaki, T., 1986, Cyclical bending of the two outer doublet microtubules in frayed axonemes of Chlamydomonas, Cell Motil. Cytoskel. 6:580–585.

    Google Scholar 

  • Kamiya, R., and Witman, G.B., 1984, Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas, J. Cell Biol. 98:97–107.

    PubMed  CAS  Google Scholar 

  • Kamiya, R., Nagai, R., and Nakamura, S., 1982, Rotation of the central pair microtubules in Chlamydomonas flagella, in: Biological Functions of Microtubules and Related Structures (H. Sakai, H. Mohri, and G.G. Borisy, eds.), Academic Press, New York, pp. 189–198.

    Google Scholar 

  • Katz, D.F., and Yanagimachi, R., 1981, Movement characteristics of hamster and guinea pig spermatozoa upon attachment to the zona pellucida, Biol. Reprod. 25:785–791.

    PubMed  CAS  Google Scholar 

  • Katz, D.F., Drobnis, E.Z., and Overstreet, J.W., 1989, Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments, Gamete Research 22:443–469.

    PubMed  CAS  Google Scholar 

  • Kauer, J.S., 1983, Surface morphology of olfactory receptors, J. Submicrosc. Cytol. 15:167–171.

    PubMed  CAS  Google Scholar 

  • Kelly, D.E., Wood, R.L., and Enders, A.C., 1984, Bailey’s Textbook of Microscopic Anatomy, 18th ed., Williams & Wilkins, Baltimore.

    Google Scholar 

  • Kennedy, J.R., Jr., and Brittingham, E., 1968, Fine structure changes during chloral hydrate deciliation of Paramecium caudatum, J. Ultrastruct. Res. 22:530–545.

    PubMed  Google Scholar 

  • King, S.M., and Witman, G.B., 1988, Structure of the a and 0 heavy chains of the outer arm dynein from Chlamydomonas flagella. Location of epitopes and protease-sensitive sites, J. Biol. Chem. 263:9244–9255.

    PubMed  CAS  Google Scholar 

  • Kuzirian, A.M., Alkon, D.L., and Harris, L.G., 1981, An infraciliary network in statocyst hair cells, J. Neurocytol. 10:497–514.

    PubMed  CAS  Google Scholar 

  • Lancet, D., 1988, Molecular components of olfactory reception and transduction, in: Molecular Neurobiology of the Olfactory System (F.L. Margolis and T.V. Getchell, eds.), Plenum Press, New York, pp. 25–50.

    Google Scholar 

  • Laverack, M.S., and Ardill, D.J., 1965, The innervation of the aesthetasc hairs of Panulirus argus, Q.J. Microsc. Sci. 106:45–60.

    Google Scholar 

  • Lee, H.C., 1984, A membrane potential-sensitive Na+-H+ exchange system in flagella isolated from sea urchin spermatozoa, J. Biol. Chem. 259:15315–15319.

    PubMed  CAS  Google Scholar 

  • Lee, H.C., Johnson, C.H., and Epel, D., 1983, Changes of internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm, Dev. Biol. 95:31–45.

    PubMed  CAS  Google Scholar 

  • Lewin, R.A., and Lee, K.W., 1985, Autotomy of algal flagella: Electron microscope studies of Chlamydomonas (Chlorophyceae) and Tetraselmis (Prasinophyceae), Phycologia 24:311–316.

    Google Scholar 

  • L’Hernault, S.W., and Rosenbaum, J.L., 1983, Chlamydomonas a-tubulin is posttranslationally modified in the flagella during flagellar assembly, J. Cell Biol 97:258–263.

    PubMed  Google Scholar 

  • L’Hernault, S.W., and Rosenbaum, J.L., 1985, Reversal of the posttranslational modification on Chlamydomonas flagellar a-tubulin occurs during flagellar resorption, J. Cell Biol 100:457–462.

    PubMed  Google Scholar 

  • Linck, R.W., Amos, L.A., and Amos, W.B., 1985, Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy, J. Cell Biol 100:126–135.

    PubMed  CAS  Google Scholar 

  • Luck, D.J.L., 1984, Genetic and biochemical dissection of the eucaryotic flagellum, J. Cell Biol 98:789–794.

    PubMed  CAS  Google Scholar 

  • Luck, D.J.L., and Piperno, G., 1989, Dynein armmutants of Chlamydomonas reinhardtii, in Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 49–60.

    Google Scholar 

  • Maas, D.H.A., Storey, B.T., and Mastroianni, L., Jr., 1977, Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatto), Fertil. Steril. 28:981–985.

    PubMed  CAS  Google Scholar 

  • Machemer, H., 1985, Mechanoresponses in protozoa, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P.S. Song, eds.), Plenum Press, New York, pp. 179–209.

    Google Scholar 

  • Machemer, H., 1986, Electromotor coupling in cilia, in: Membrane Control of Cellular Activity, Volume 33 (H.C. Luttgau, ed.), Fortschritte der Zoologie, Fischer Verlag, Stuttgart, pp. 205–250.

    Google Scholar 

  • Machemer, H., and Machemer-Rohnisch, S., 1983, Tail cilia of Paramecium passively transmit mechanical stimuli to the cell soma, J. Submicrosc. Cytol 15:281–284.

    Google Scholar 

  • Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol (London) 296:49–60.

    CAS  Google Scholar 

  • Macnab, R.M., 1987a, Flagella, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol 1. (J.L. Ingraham, D.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.) American Society for Microbiology, Washington, D.C., pp. 70–83.

    Google Scholar 

  • Macnab, R.M., 1987b, Motility and Chemotaxis, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Volume 1 (J.L. Ingraham, D.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 732–759.

    Google Scholar 

  • Maihle, N.J., Dedman, J.R., Means, A.R., Chafouleas, J.G., and Satir, B.H., 1981, Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia, J. Cell Biol 89:695–699.

    PubMed  CAS  Google Scholar 

  • Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven.

    Google Scholar 

  • Melkonian, M., 1978, Structure and significance of cruciate flagellar root systems in green algae: Comparative investigations in species of Chlorosarcinopsis (Chlorosarcinales), Plant Syst. Evol. 130:265–292.

    Google Scholar 

  • Melkonian, M., 1980, Ultrastructural aspects of basal body associated fibrous structures in green algae: A critical review, BioSystems 12:85–104.

    PubMed  CAS  Google Scholar 

  • Melkonian, M., Robenek, H., and Rassat, J., 1982, Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis, J. Cell Sci. 55:115–135.

    PubMed  CAS  Google Scholar 

  • Menco, B., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat, and dog. I.A general survey, Cell Tissue Res 207:183–209.

    PubMed  CAS  Google Scholar 

  • Mohri, H., and Yanagimachi, R., 1980, Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa, Exp. Cell Res. 127:191–196.

    PubMed  CAS  Google Scholar 

  • Moran, D.T., Rowley, J.C., Zill, S.N., and Varela, F.G., 1976, The mechanism of sensory transduction in a mechano-receptor: Functional stages in campaniform sensilla during the molting cycle, J. Cell Biol. 71: 832–847.

    PubMed  CAS  Google Scholar 

  • Morisawa, M., 1987, The process of initiation of sperm motility at spawning and ejaculation, in: New Horizons in Sperm Cell Research (H. Mohri, ed.), Japan Sci. Soc. Press, Tokyo, pp. 137–157.

    Google Scholar 

  • Morisawa, M., and Okuno, M., 1982, Cyclic AMP induces maturation of trout sperm axoneme to initiate motility, Nature 295:703–704.

    PubMed  CAS  Google Scholar 

  • Moss, A.B., and Tamm, S.L., 1987, A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates, Proc. Natl. Acad. Sci. USA 84:6476–6480.

    PubMed  CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation, Science 164:963–965.

    PubMed  CAS  Google Scholar 

  • Naitoh, Y., and Kaneko, H., 1973, Control of ciliary activities by adenosine-triphosphate and divalent cations in Triton-extracted models of Paramecium caudatum, J. Exp. Biol. 58:657–676.

    CAS  Google Scholar 

  • Nakamura, T., and Gold, G.H., 1987, A cyclic nucleotide-gated conductance in olfactory receptor cilia, Nature 325:442–444.

    PubMed  CAS  Google Scholar 

  • Nakaoka, Y., and Ooi, H., 1985, Regulation of ciliary reversal in Triton-extracted Paramecium by calcium and cyclic adenosine monophosphate, J. Cell Sci. 77:185–195.

    PubMed  CAS  Google Scholar 

  • Olson, G.E., and Linck, R.W., 1977, Observations on the structural components of flagellar axonemes and central pair microtubules from rat sperm, J. Ultrastruct. Res. 61:21–43.

    PubMed  CAS  Google Scholar 

  • Omoto, C.K., and Kung, C., 1979, The pair of central tubules rotates during ciliary beat in Paramecium, Nature 279:532–534.

    PubMed  CAS  Google Scholar 

  • Omoto, C.K., and Kung, C., 1980, Rotation and twist of the central-pair microtubules in the cilia of Paramecium, J. Cell Biol. 87:33–46.

    PubMed  CAS  Google Scholar 

  • Omoto, C.K., and Witman, G.B., 1981, Functionally significant central-pair rotation in a primitive eukaryotic flagellum, Nature 290:708–710.

    PubMed  CAS  Google Scholar 

  • Otter, T., 1989, Calmodulin and the control of flagellar movement, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 281–298.

    Google Scholar 

  • Otter, T., Satir, B.H., and Satir, P., 1984, Trifluoperazine-induced changes in swimming behavior of Paramecium: Evidence for two sites of drug action, Cell Motil. 4:249–267.

    PubMed  CAS  Google Scholar 

  • Pace, U., Harski, E., Solomon, Y., and Lancet, D., 1985, Odorant-sensitive adenylate cyclase may mediate olfactory reception, Nature 316:255–258.

    PubMed  CAS  Google Scholar 

  • Paschal, B.M., King, S.M., Moss, A.G., Collins, C.A., Vallee, R.B., and Witman, G.B., 1987, Isolated flagellar outer arm dynein translocates brain microtubules in vitro, Nature 330:672–674.

    PubMed  CAS  Google Scholar 

  • Pasquale, S.M., and Goodenough, U.W., 1987, Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii, J. Cell Biol. 105:2279–2292.

    PubMed  CAS  Google Scholar 

  • Perkins, L., Hedgecock, J.N., Thomson, J.N., and Culotti, J., 1986, Mutant sensory cilia in Caenorhabditis elegans, Dev. Biol. 117:456–487.

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J., 1974, Evolution of mitosis and the eukaryote condition, BioSystems 6:37–45.

    PubMed  CAS  Google Scholar 

  • Piperno, G., 1988, Isolation of a sixth dynein subunit adenosine triphosphatase of Chlamydomonas axonemes, J. Cell Biol. 106:133–140.

    PubMed  CAS  Google Scholar 

  • Piperno, G., and Luck, D.J.L., 1981, Inner arm dyneins from flagella of Chlamydomonas reinhardtii, Cell 27: 331–340.

    PubMed  CAS  Google Scholar 

  • Pitelka, D.R., 1974, Basal bodies and root structures, in: Cilia and Flagella (M.A. Sleigh, ed.), Academic Press, New York, pp. 437–469.

    Google Scholar 

  • Poole, A.C., Flint, M.H., and Beaumont, B.W., 1985, Analysis of the morphology and function of primary cilia in connective tissues: A cellular cybernetic probe? Cell Motil. 5:175–193.

    PubMed  CAS  Google Scholar 

  • Ramanis, Z., and Luck, D.J.L., 1986, Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA 83:423–426.

    PubMed  CAS  Google Scholar 

  • Rhein, L.D., and Cagan, R.H., 1980, Biochemical studies of olfaction: Isolation, characterization, and odorant binding activity of cilia from rainbow trout olfactory rosettes, Proc. Natl. Acad. Sci. USA 77:4412–4416.

    PubMed  CAS  Google Scholar 

  • Ringo, D.L., 1967a, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol. 33:543–571.

    PubMed  CAS  Google Scholar 

  • Ringo, D.L., 1967b, The arrangement of subunits in flagellar fibers, J. Ultrastruct. Res. 17:266–277.

    PubMed  CAS  Google Scholar 

  • Rohlich, P., 1975, The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia, Cell Tissue Res. 161:421–430.

    PubMed  CAS  Google Scholar 

  • Roth, K.E., Rieder, C.L., and Bowser, S.S., 1988, Flexible substratum technique for viewing cells from the side: Some in vivo properties of primary (9+0) cilia in cultured kidney epithelia, J. Cell Sci. 89: 457–466.

    PubMed  Google Scholar 

  • Rubin, R.W., and Filner, P., 1973, Adenosine 3’,5’-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration, J. Cell Biol. 56:628–635.

    PubMed  CAS  Google Scholar 

  • Sale, W.S., and Fox, L.A., 1988, Isolated (3-heavy chain subunit of dynein translocates microtubules in vitro, J. Cell Biol. 107:1793–1797.

    PubMed  CAS  Google Scholar 

  • Sale, W.S., and Satir, P., 1977, Direction of active sliding of microtubules in Tetrahymena cilia, Proc. Natl. Acad. Sci. USA 74:2045–2049.

    PubMed  CAS  Google Scholar 

  • Salisbury, J.L., Sanders, M.A., and Harpst, L., 1987, Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii, J. Cell Biol. 105:1799–1805.

    PubMed  CAS  Google Scholar 

  • Sanders, M.A., and Salisbury, J.L., 1989, Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardii, J. Cell Biol. 108:1751–1760.

    PubMed  CAS  Google Scholar 

  • Satir, B., Sale, W.S., and Satir, P., 1976, Membrane renewal after dibucaine deciliation of Tetrahymena, Exp. Cell Res. 97:83–91.

    PubMed  CAS  Google Scholar 

  • Satir, P., 1965, Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of filaments in motility, J. Cell Biol. 26:805–834.

    PubMed  CAS  Google Scholar 

  • Satir, P., 1968, Studies on cilia. III. Further studies on the cilium tip and a sliding filament model of ciliary motility, J. Cell Biol. 39:77–94.

    PubMed  CAS  Google Scholar 

  • Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A., and Avolio, J., 1981, The mechanochemical cycle of the dynein arm, Cell Motil. 1:303–327.

    PubMed  CAS  Google Scholar 

  • Schmidt, J.A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii, Nature 262:713–715.

    PubMed  CAS  Google Scholar 

  • Segal, R.A., and Luck, D.J., 1985, Phosphorylation in isolated Chlamydomonas axonemes: A phosphoprotein may mediate the Ca2+-dependent photophobic response, J. Cell Biol. 101:1702–1712.

    PubMed  CAS  Google Scholar 

  • Segal, R.A., Huang, B., Ramanis, Z., and Luck, D.J.L., 1984, Mutant strains of Chlamydomonas reinhardtii that move backwards only, J. Cell Biol. 98:2026–2034.

    PubMed  CAS  Google Scholar 

  • Shapiro, B.M., and Tombes, R.M., 1985, A biochemical pathway for a cellular behaviour: pH,, phosphorylcreatine shuttles, and sperm motility, Bio Essays 3:100–103.

    CAS  Google Scholar 

  • Shingyoji, C., Murakami, A., and Takahashi, K., 1977, Local reactivation of Triton-extracted flagella by iontophoretic application of ATP, Nature 265:269–270.

    PubMed  CAS  Google Scholar 

  • Sleigh, M.A., 1962, The Biology of Cilia and Flagella, Macmillan Co., New York.

    Google Scholar 

  • Sleigh, M.A., 1974, Introduction, in: Cilia and Flagella (M.A. Sleigh, ed.), Academic Press, New York, pp. 1–7.

    Google Scholar 

  • Sleigh, M.A., 1977, The nature and action of respiratory tract cilia, in: Respiratory Defense Mechanisms, Part 1, (J.D. Brain, D.F. Procter, and L.M. Reid, eds.), Dekker, New York, pp. 247–288.

    Google Scholar 

  • Sleigh, M.A., and Silvester, N.R., 1983, Anchorage functions of the basal apparatus of cilia, J. Submicrosc. Cytol. 15:101–104.

    Google Scholar 

  • Stavis, R.L., and Hirschberg, R., 1973, Phototaxis in Chlamydomonas reinhardtii, J. Cell Biol. 59:367–377.

    PubMed  CAS  Google Scholar 

  • Stephens, R.E., 1970, Isolation of nexin—the linkage protein responsible for maintenance of the nine-fold configuration of flagellar axonemes, Biol. Bull. (Woods Hole, Mass.) 139:438. (Abstr.).

    Google Scholar 

  • Stephens, R.E., and Stommel, E.W., 1989, The role of cAMP in ciliary and flagellar motility, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 299–316.

    Google Scholar 

  • Stommel, E.W., 1984, Calcium activation of mussel gill abfrontal cilia, J. Comp. Physiol. A 155:457–469.

    CAS  Google Scholar 

  • Stommel, E.W., and Stephens, R.E., 1985, Cyclic AMP and calcium in the differential control of Mytilus gill cilia, J. Comp. Physiol. A 157:451–459.

    PubMed  CAS  Google Scholar 

  • Stommel, E.W., Stephens, R.E., and Alkon, D.L., 1980, Motile statocyst cilia transmit rather than directly transduce mechanical stimuli, J. Cell Biol. 87:652–662.

    PubMed  CAS  Google Scholar 

  • Stryer, L., 1986, Cyclic GMP cascade of vision, Annu. Rev. Neurosci. 9:87–119.

    PubMed  CAS  Google Scholar 

  • Stubblefield, E., and Brinkley, B.R., 1967, Architecture and function of the mammalian centriole, in: Formation and Fate of Cell Organelles (K.B. Warren, ed.) Academic Press, New York, pp. 175–218.

    Google Scholar 

  • Summers, K.E., and Gibbons, I.R., 1971, Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci. USA 68:3092–3096.

    PubMed  CAS  Google Scholar 

  • Summers, K.E., and Gibbons, I.R., 1973, Effects of trypsin digestion on flagellar structures and their relationship to motility, J. Cell Biol. 58:618–629.

    PubMed  CAS  Google Scholar 

  • Tamm, S.L., 1988a, Calcium activation of macrocilia in the ctenophore Beroë, J. Comp. Physiol. A 163:23–31.

    PubMed  CAS  Google Scholar 

  • Tamm, S.L., 1988b, Iontophoretic localization of Ca-sensitive sites controlling activation of ciliary beating in macrocilia of Beroë. The ciliary rete, Cell Motil. Cytoskel. 11:126–138.

    CAS  Google Scholar 

  • Tamm, S.L., and Horridge, G.A., 1970, The relationship between the orientation of the central fibrils and the direction of beat in cilia of Opalina, Proc. R. Soc. London Ser. B 175:219–233.

    Google Scholar 

  • Tamm, S.L., and Tamm, S., 1981, Ciliary reversal without rotation of axonemal structures in ctenophore comb plates, J. Cell Biol. 89:495–509.

    PubMed  CAS  Google Scholar 

  • Tash, J.S., and Means, A.R., 1983, Cyclic adenosine 3’,5’ monophosphate, calcium, and protein phosphorylation in flagellar motility, Biol. Reprod. 28:75–104.

    PubMed  CAS  Google Scholar 

  • Tilney, L.G., Bryan, J., Bush, D.J., Fujiwara, K., Mooseker, M.S., Murphy, D.B., and Snyder, D.H., 1973, Microtubules: Evidence for 13 protofilaments, J. Cell Biol. 59:267–275.

    PubMed  CAS  Google Scholar 

  • Tilney, L.G., Tilney, M.S., and Cotanche, D.A., 1988, Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated, J. Cell Biol. 106:355–365.

    PubMed  CAS  Google Scholar 

  • Trimmer, J.S., and Vacquier, V.D., 1986, Activation of sea urchin gametes, Annu. Rev. Cell Biol. 2:1–26.

    PubMed  CAS  Google Scholar 

  • Tucker, R.W., Pardee, A.B., and Fujiwara, K., 1979, Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells, Cell 17:527–535.

    PubMed  CAS  Google Scholar 

  • Vale, R.D., and Toyoshima, Y.Y., 1988, Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia, Cell 52:459–469.

    PubMed  CAS  Google Scholar 

  • Verdugo, P., 1980, Ca2 +-dependent hormonal stimulation of ciliary activity, Nature 283:764–765.

    PubMed  CAS  Google Scholar 

  • Verdugo, P., 1982, Introduction: Mucociliary function in mammalian epithelia, Cell Motil. Suppl. 1:1–5.

    Google Scholar 

  • Verdugo, P., Johnson, N.T., and Tam, P.Y., 1980a, Beta-adrenergic stimulation of respiratory ciliary activity, J. Appl. Physiol. 48:868–871.

    PubMed  CAS  Google Scholar 

  • Verdugo, P., Lee, W.I., Halbert, S.A., Blandau, R.J., and Tam, P.Y., 1980b, A stochastic model for oviductal egg transport, Biophys. J. 29:257–270.

    PubMed  CAS  Google Scholar 

  • Verdugo, P., Rumery, R.E., and Tam, P.Y., 1980c, Hormonal control of oviductal ciliary activity: Effect of prostaglandins, Fertil. Steril. 33:193–196.

    PubMed  CAS  Google Scholar 

  • Villalon, M., and Verdugo, P., 1982, Hormonal regulation of ciliary function in the oviduct: The effect of betaadrenergic agonists, Cell Motil. Suppl. 1:59–65.

    Google Scholar 

  • Walter, M.F., and Schultz, J.E., 1981, Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia, Eur. J. Cell Biol. 24:97–100.

    PubMed  CAS  Google Scholar 

  • Ward, S., Thomson, N., White, J.G., and Brenner, S., 1975, Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans, J. Comp. Neurol. 160:313–338.

    PubMed  CAS  Google Scholar 

  • Warner, F.D., 1976, Ciliary inter-microtubule bridges, J. Cell Sci. 20:101–114.

    PubMed  CAS  Google Scholar 

  • Warner, F.D., 1983, Organization of interdoublet links in Tetrahymena cilia, Cell Motil. 3:321–332.

    Google Scholar 

  • Warner, F.D., and Satir, P., 1973, The substructure of ciliary microtubules, J. Cell Sci. 12:313–326.

    PubMed  CAS  Google Scholar 

  • Warner, F.D., and Satir, P., 1974, The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding, J. Cell Biol. 63:35–63.

    PubMed  CAS  Google Scholar 

  • Warner, F.D., Mitchell, D.R., and Perkins, C.R., 1977, Structural conformation of the ciliary ATPase dynein, J. Mol. Biol. 114:367–384.

    PubMed  CAS  Google Scholar 

  • Warner, F.D., Satir, P., and Gibbons, I.R. (eds.), 1989, Cell Movement, Volume 1, Liss, New York.

    Google Scholar 

  • Warr, J.R., McVittie, A., Randall, J., and Hopkins, J.M., 1966, Genetic control of flagellar structure in Chlamydomonas reinhardtii, Genet. Res. 7:335–351.

    Google Scholar 

  • Wheatley, D.N., 1982, The Centriole: A Central Enigma of Cell Biology, Elsevier, Amsterdam.

    Google Scholar 

  • Williams, N.E., and Luft, J.H., 1968, Nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena, J. Ultrastruct. Res. 25:271–292.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., 1989, Perspective: Composition and molecular organization of the dyneins, in: Cell Movement, Volume 1 (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Liss, New York, pp. 25–35.

    Google Scholar 

  • Witman, G.B., and Minervini, N., 1982, Dynein arm conformation and mechanochemical transduction in the eukaryotic flagellum, Symp. Soc. Exp. Biol. 35:203–224.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., Carlson, K., Berliner, J., and Rosenbaum, J.L., 1972, Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes, J. Cell Biol. 54:507–539.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., Fay, R., and Plummer, J., 1976, Chlamydomonas mutants: Evidence for the roles of specific axonemal components in flagellar movement, in: Cell Motility, Book C (R.D. Goldman, T.D. Pollard, and J.L. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harber, N.Y., pp. 969–986.

    Google Scholar 

  • Witman, G.B., Plummer, J., and Sander, G., 1978, Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components, J. Cell Biol. 76:729–747.

    PubMed  CAS  Google Scholar 

  • Wolf, D.E., Hagopian, S.S., and Ishijima, S., 1986, Changes in sperm plasma membrane lipid diffusibility following hyperactivation during in vitro capacitation in the mouse, J. Cell Biol. 102:1372–1377.

    PubMed  CAS  Google Scholar 

  • Wright, R.L., Salisbury, J., and Jarvik, J.W., 1985, A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation, J. Cell Biol. 101:1903–1912.

    PubMed  CAS  Google Scholar 

  • Wunderlich, F., and Speth, V., 1972, Membranes in Tetrahymena. I. The cortical pattern, J. Ultrastruct. Res. 41:258–269.

    PubMed  CAS  Google Scholar 

  • Yanagimachi, R., 1981, Mechanism of fertilization in mammals, in: Fertilization and Embryonic Development in Vitro (L. Mastroianni, Jr., and J.D. Biggers, eds.), Plenum Press, New York, pp. 81–182.

    Google Scholar 

  • Yanagimachi, R., 1988, Mammalian fertilization, in: The Physiology of Reproduction (E. Knobil, J. Neill, L.L. Ewing, G.S. Greenwald, C.L. Markert, and D.W. Pfaff, eds.), Raven Press, New York, pp. 135–185.

    Google Scholar 

  • Yanagimachi, R., and Usui, N., 1974, Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa, Exp. Cell Res. 89:161–174.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witman, G.B. (1990). Introduction to Cilia and Flagella. In: Bloodgood, R.A. (eds) Ciliary and Flagellar Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0515-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0515-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7845-0

  • Online ISBN: 978-1-4613-0515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics