Poor Early Growth and Adult Mental and Somatic Health

  • George A. Clark
  • Nicholas R. Hall
  • Carolyn M. Aldwin
  • Allan L. Goldstein
  • R. Clayton Steiner
Conference paper
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Early growth and adult psychoneuroimmunology are usually seen as two separate ends of the life course, but in some ways they may be inextricably linked. This chapter presents a rationale and preliminary evidence suggesting that poor early growth may be a factor in adult psychoneuroimmunology.

Keywords

Sugar Depression Osteoporosis Corticosteroid Cortisol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldwin, C. M., Clark, G. A., Hall, N., Levenson, M. R., and Bosse’, R., 1988, Immune regulation and psychological symptoms, Gerontologist. 28: 155A (abstract).Google Scholar
  2. Allen, L. H., 1986, Maternal nutrition and fetal outcome, in: Human Growth: A Multidisciplinary Review ( A. Demirjian, ed.), Tayler and Francis, London, pp. 265–272.Google Scholar
  3. Andreasen, E., and Christensen, S., 1949, Rate of mitotic activity in lymphoid organs of rat, Anat. Rec. 103: 401–412.PubMedCrossRefGoogle Scholar
  4. Bach, J. F., LeBrigand, H., and Barois, M., 1972, Evidence for a serum thymic factor produced by the human thymus, Lancet 2: 1056–1058.PubMedCrossRefGoogle Scholar
  5. Barson, A. J., 1974, Developmental pathology of the spine, in: Scientific Foundations of Pediatrics ( J. A. Davis and J. Dobbing, eds.), W. B. Saunders, Philadelphia, pp. 759–785.Google Scholar
  6. Bell, B., Rose, C. L., and Damon, A., 1972, The Normative Aging Study: An interdisciplinary study of aging, Aging Hum. Dev. 3: 5–17.CrossRefGoogle Scholar
  7. Blau, J. N., 1972, DNA synthesis in the adult and aging guinea pig thymus, Clin. Exp. Immunol. 11: 461–468.PubMedGoogle Scholar
  8. Borkan, G. A., and Vokonas, P. S., 1986, Interaction between physique and mortality risk, Gerontologist 26: 8 (abstract).CrossRefGoogle Scholar
  9. Boyd, E., 1936, Weight of the thymus and its component parts and number of Hassal corpuscles in health and disease, Am. J. Dis. Child. 51: 313.Google Scholar
  10. Brandt, E., 1978, Growth dynamics of low-birth-weight infants with emphasis on the perinatal period, in: Human Growth and Postnatal Growth ( F. Falkner and J. M. Tanner, eds.), Plenum, New York, pp. 557–617.Google Scholar
  11. Brooke, O. G., Wood, C., and Butters, F., 1984, The body proportions for small-for-date infants, Early Hum. Dev. 10: 85–94.PubMedCrossRefGoogle Scholar
  12. Brown, R. E., 1965, Decreased brain weight in malnutrition and its implications, E. Afr. Med. J. 11: 584.Google Scholar
  13. Burch, P. R. J., 1976, The Biology of Cancer, A New Approach. MTP Press, Lancaster, England.Google Scholar
  14. Chandra, R. K., 1981, Serum thymic hormone activity and cell-mediated immunity in healthy neonates, preterm infants and small-for-gestational age infants, Pediatrics 67: 407–411.PubMedGoogle Scholar
  15. Chandra, R. K., 1975, Fetal malnutrition and postnatal immunocompetence, Am. J. Dis. Child. 129: 450.PubMedGoogle Scholar
  16. Clark, G. A., 1985, Heterochrony, Allometry, and Canalization in the Human Vertebral Column: Examples from Prehistoric Amerindian Populations, Doctoral dissertation, Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, International Microfilms, #8509532, Ann Arbor, Michigan.Google Scholar
  17. Clark, G. A., 1987, A new method for analyzing poor early growth and sexual dimorphism, Am. J. Phys. Anthropol. 77: 105–116.CrossRefGoogle Scholar
  18. Clark, G. A., Panjabi, M. M., and Wetzel, F. T., 1985, Can infant malnutrition cause adult vertebral stenosis?, Spine 10: 165–170.PubMedCrossRefGoogle Scholar
  19. Clark, G. A., Hall, N. R., Armelagos, G. J., Borkan, G. A., Panjabi, M. M., and Wetzel, F. T., 1986, Poor growth prior to early childhood: Decreased health and life-span in the adult, Am. J. Phys. Anthropol. 70: 145–150.PubMedCrossRefGoogle Scholar
  20. Clark, G. A., Hall, N. R., Aldwin, C. M., Harris, J. M., Borkan, G. A., and Srinivasan, M., 1988a, Measures of poor early growth are correlated with lower adult levels of thymosin alpha-1: Results from the Normative Aging Study, Hum. Biol. 60: 435–451.PubMedGoogle Scholar
  21. Clark, G. A., Hall, N. R., Aldwin, C. M., Goldstein, A., and Armelagos, G. J., 1989, Measures of poor early growth are correlated with adult levels of thymosin alpha-1: A follow-up study in the Normative Aging Study, Am. J. Hum. Biol. 1: 331–337.CrossRefGoogle Scholar
  22. Cohen, J., and Cohen, P., 1975, Applied Multiple Regression/Correlational Analysis For the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  23. Cooper, M. D., 1983, B-Cell differentiation, Birth Defects 19: 25–29.PubMedGoogle Scholar
  24. Cooper, W. C., Good, R. A., and Mariani, T., 1974, Effects of protein insufficiency on immune responsiveness, Am. J. Nutr. 27: 647–664.Google Scholar
  25. Cueto, S. M. C., Carmona-Buendia, P., and Cruz-Bolanos, J. C., 1985, Activity of serum thymic factor in undernourished new born infants, Arch. Invest. Med. 16: 199–207.Google Scholar
  26. de Labry, L. L., Champion, E. W., Glynn, R. J., and Vokonas, P. S., 1988, Relation of white blood cell count and lymphocytes to mortality over 13 years, Gerontologist, 28:11 OA (abstract).Google Scholar
  27. Denenberg, V. H., 1964, Critical periods, stimulus input, and emotional reactivity: A theory of infantile stimulation, Psychol. Rev. 71: 335–357.PubMedCrossRefGoogle Scholar
  28. Derogatis, L., 1983, SCL-90-R Revised Manual, Johns Hopkins University School of Medicine, Baltimore.Google Scholar
  29. Dubos, R., Lee, C., and Costello, R., 1969, Lasting biological effects of early environmental influences, J. Exp. Med. 130: 963–977.PubMedCrossRefGoogle Scholar
  30. Fabris, N., 1977, Hormones and aging, in: Comprehensive Immunology. Vol. I: Immunology and Aging ( T. Makinodan and E. Yunis, eds.), Plenum, New York, pp. 73–89.Google Scholar
  31. Fabris, N., Mocchegiani, E., Mariotti, S., Caramia, G., Braccili, T., Pacini, F., and Pinchera, A., 1987, Thymulin deficiency and low 3,5,3′-triiodothyronine syndrome in infants with low birth weight syndromes, J. Clin. Endocrinol. Metab. 65: 247–252.PubMedCrossRefGoogle Scholar
  32. Fauman, M. A., 1982, The central nervous system and the immune system, Biol. Psychiatry 17: 1459–1482.PubMedGoogle Scholar
  33. Goldstein, A. L., Low, T. L. K., Zatz, M. M., Hall, N. R., and Naylor, P. H., 1983, Thymosins: Chemical and biological studies of thymosins, Clin. Immunol. Allergy 3: 119–132.Google Scholar
  34. Gowans, J. L., Gesner, B. M., and McGregor, D. D., 1961, The immunological activity of lymphocytes, Ciba Found. Study Group 10: 32–40.Google Scholar
  35. Gray, J. A., 1971, The Psychology of Fear and Stress, Weidenfeld and Nicolson, London.Google Scholar
  36. Gross, R. I., and Newberne, P. M., 1980, Role of nutrition in immunologic function, Physiol. Rev. 60: 188–302.PubMedGoogle Scholar
  37. Gruenwald, P., 1968, Fetal growth as an indicator of socioeconomic change, Publ. Health Rep. 83: 867–872.Google Scholar
  38. Gunn, T., Reece, E., Metrakos, K., and Colle, E., 1981, Depressed T cells following neonatal steroid treatment, Pediatrics 67: 61–67.PubMedGoogle Scholar
  39. Guyton, A. C., 1982, Basic Human Physiology: Normal Function and Mechanisms of Disease, W. B. Saunders, London.Google Scholar
  40. Hall, N. R., and Goldstein, A. L., 1983, The thymus-brain connection: Interactions between thymosin and the neuroendocrine system, Lymphokine Res. 2: 1–5.PubMedGoogle Scholar
  41. Hall, N. R., J. P., McGillis, B. L., Spangelo, D. L., Healy, and Goldstein, A. L., 1985, Immunomodulatory peptides and the central nervous system, Springer Semin. Immunopathol. 8: 153–164.Google Scholar
  42. Hatotani, N., Nomura, K. Inoue, and Kitayama, I., 1979, Psychoendocrine model of depression, Psychoneuroendocrinology 4: 155–172.Google Scholar
  43. Haynes, B. F., 1984, Phenotypic characterization and ontogeny of components of the human thymic microenvironment, Clin. Res. 32: 500–507.PubMedGoogle Scholar
  44. Hayward, A. R., 1981, Development of lymphocyte responses and interactions in the human fetus and newborn, Immunol. Rev. 57: 39–60.PubMedCrossRefGoogle Scholar
  45. Healy, D. L., Hodgen, G. D., Schulte, H. M., Chrousos, G. P., Loriaux, D. L., Hall, N. R., and Goldstein, A. L., 1983, The thymus-adrenal connection: thymosin has corticotropin-releasing activity in primates, Science 222: 1353.PubMedCrossRefGoogle Scholar
  46. Hess, M. W., Stoner, R. D., and Cottier, H., 1967. Growth characteristics of mouse thymus in the neonatal period, Nature (Lond.) 215: 426–428.CrossRefGoogle Scholar
  47. Hinck, V. C., Clark, W. M., Hopkins, C. E., 1966, Normal interpediculate distance (minimum and maximum) in children and adults, Radiology 97: 141–153.Google Scholar
  48. Hirokawa, L., and Makinodan, T., 1975, Thymic involution. Effect on T-cell differentiation, J. Immunol. 114: 1659–1664.PubMedGoogle Scholar
  49. Hood, L., and Talmage, D. W., 1971, On the mechanism of antibody diversity: Evidence for the germ- line basis of antibody variability, in: Developmental Aspects of Antibody Formation and Structure, Vol. II ( J. Sterzl and I. Riha, eds.), Academic, New York, pp. 935–962.Google Scholar
  50. Jerne, N. K., 1971, The somatic generation of immune recognition, Eur. J. Immunol. 1: 1–9.PubMedCrossRefGoogle Scholar
  51. Jialal, I., and Joubert, S. M., 1982, Cortisol, glucagon and growth hormone responses to oral glucose in non-insulin dependent diabetes in the young, S. Afr. Med. J. 62: 549–552.PubMedGoogle Scholar
  52. Jose, D. G., Stutman, O., and Good, R. A., 1973, Long term effects on immune function of early nutritional deprivation, Nature (Lond.) 241: 57–58.CrossRefGoogle Scholar
  53. Keusch, G. T., Cruz, J. R., Torun, B., Urrutia, J. J., Smith, H., Jr., and Goldstein, A. L., 1987, Immature circulating lymphocytes in severely malnourished Guatemalan children, J. Pediatr. Gastro. Nutr. 6: 265–270.CrossRefGoogle Scholar
  54. Klein, D. C., 1978, The pineal gland: A model of neuroendocrine regulation, in: The Hypothalamus ( S. Reichlin, R. J., Baldessanni, and J. B. Martin, eds.), Raven, New York, pp. 303–327.Google Scholar
  55. Koninkx, J. F. J. G., Schreurs, A. D. J. M., Penninks, A. H.., and Seinen, W., 1984, Induction of postthymic T-cell maturation by thymic humoral factor(s) derived from a tumor cells of epithelial origin, Thymus 6: 395–409.PubMedGoogle Scholar
  56. Lapin, F., 1974, Influence of simultaneous pinealectomy and thymectomy on the growth and formation of matastases of the Yoshida sarcoma in rats, Exp. Pathol. 9: 108–112.Google Scholar
  57. Lewis, V. M., Twomey, J. J., Bealmear, P., Goldstein, G., and Good, R. A., 1978, Age, thymic involution, and circulating thymic hormone activity, J. Clin. Endocrinol. Metab. 47: 145–150.PubMedCrossRefGoogle Scholar
  58. Liddle, G. W., 1965, Assessment of pituitary and adrenal function, Physicians 3: 1–5.Google Scholar
  59. McCormick, M. C., 1985, The contribution of low birth weight to infant mortality and childhood morbidity, Engl. J. Med. 312: 82–89.CrossRefGoogle Scholar
  60. McLeod, K. I., and Liew, F. Y., 1975, Maternal protein deficiency and the immune response of the progeny in the rat, Proc. Nutr. Soc. 34:41 A.Google Scholar
  61. Michalke, W. D., Hess, M. W., Riedwyl, H., Stoner, R. D., and Cottier, H., 1969, Thymic lympho¬poiesis and cell loss in newborn mice, Blood 33: 541–554.PubMedGoogle Scholar
  62. Mitchell, G. F., and Miller, J. F. A. P., 1968, Cell-to-cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes, J. Exp. Med. 128: 821–837.PubMedCrossRefGoogle Scholar
  63. Morley, A., Holmes, K., and Forbes, I., 1974, Depletion of B lymphocytes in chronic hypoplastic marrow failure (aplastic anaemia), Aust. NZ. J. Med. 4: 538–541.CrossRefGoogle Scholar
  64. Naylor, P. H. Friedman-Kien, A., Hersh, E., Erdos, M., and Goldstein, A., 1986, Thymosin alpha 1 and thymosin beta 4 in serum colon: Comparison of normal, cord, and homosexual and AIDS serum comparison, Int. J. Immunol. Pharmacol. 8: 667–676.Google Scholar
  65. Owen, J. J. T., and Jenkinson, E. J., 1981, Embryology of the lymphoid system, Prog. Allergy 29: 1–34.PubMedGoogle Scholar
  66. Pazmino, N. H., Ihle, J. N., and Goldstein, A. I., 1978a, Induction in vivo and in vitro of terminal deoxynucleotidyl transferase by thymosin in bone marrow cells from athymic mice, J. Exp. Med. 147: 708.PubMedCrossRefGoogle Scholar
  67. Pazmino, N. H., Ihle, J. N., McEwan, R. N., and Goldstein, A. L., 1978b, Control of differentiation of thymocyte precursors in the bone marrow by thymic hormones, Cancer Treatm. Rep. 62: 1749–1755.Google Scholar
  68. Pierpaoli, W., 1975, Inability of thymus cells from newborn donors to restore transplantation immunity in athymic mice, Immunology 29: 802–803.Google Scholar
  69. Pierpaoli, W., 1981, Integrated phylogenetic ontogenetic evolution of the neuroendocrine system and identity-defense, immune functions, in: Psychoimmunology ( R. Arden ed.), Academic, Orlando, Florida, pp. 575–606.Google Scholar
  70. Pierpaoli, W., and Besedovsky, H., 1975, Role of the thymus in programming of neuroendocrine functions, Clin. Exp. Immunol. 20: 323–338.PubMedGoogle Scholar
  71. Pierpaoli, W., and Maestroni, M., 1981, Proceedings XXVIII Inter. Cong, of Physiol. Sciences, Budapest.Google Scholar
  72. Pierpaoli, W., and Sorkin, E., 1972, Hormones, thymus and lymphocyte functions, Experientia 28: 1385–1389.PubMedCrossRefGoogle Scholar
  73. Pierpaoli, W., Kopp, H. G., and Bianchi, E., 1976, Interdependence of thymic and neuroendocrine functions in ontogeny, Clin. Exp. Immunol. 24: 501–506.PubMedGoogle Scholar
  74. Pierpaoli, W., Haemmerli, M., Sorkin, E., and Hurni, H., 1977, Role of thymus and hypothalamus in ageing, in: European Symposium on Basic Research in Gerontology, Vergag Straube, Erlangen, pp. 141–150.Google Scholar
  75. Platt, B. S., and Stewart, R. J. C., 1962, Transverse trabeculae and osteoporosis in bones in experimen¬tal protein-calorie deficiency, Br. J. Nutr. 16: 483–495.PubMedCrossRefGoogle Scholar
  76. Platt, B. S., and Stewart, R. J. C., 1967, Experimental protein-calorie deficiency: Histopathological changes in the endocrine glands of pigs. J. Endocrinol. 38: 121–143.PubMedCrossRefGoogle Scholar
  77. Plaut, S. M., Friedman, S. B., 1981, Psychosocial factors in infectious disease, in: Psychoneuroimmunology ( R. Ader, ed.), Academic, Orlando, Florida.Google Scholar
  78. Porter, K. A., and Cooper, E. H., 1962, Transformation of adult allogeneic small lymphocytes after transfusion into new born rats, J. Exp. Med. 115: 997–1007.PubMedCrossRefGoogle Scholar
  79. Porter, R. W., Hibbert, C., and Wellman, C., 1980, Backache and the lumbar spinal canal, Spine 5: 99–105.PubMedCrossRefGoogle Scholar
  80. Porter, R. W., and Pavitt, D., 1987, The vertebral canal. 1. Nutrition and development: An archaeological study, Spine 12: 901–906.PubMedCrossRefGoogle Scholar
  81. Porter, R. W., Drinkall, J. N., Porter, D. E., and Thorp, L., 1987b, The vertebral canal. II. Health and academic status, A clinical study, Spine 12: 907–911.PubMedCrossRefGoogle Scholar
  82. Riley, V., 1981, Psychoneuroendocrine influences on immunocompetence and neoplasia, Science 212: 110–1109.CrossRefGoogle Scholar
  83. Roaf, P., 1960, Vertebral growth and its mechanical control, J. Bone Joint Surg. 42B: 40–59.Google Scholar
  84. Rose, N. R., Milgroom, F., and Von Oso, C., 1973, Principles of Immunology, Macmillan, New York.Google Scholar
  85. Silverstein, A. M., 1970, Lymphogenesis, immunogenesis, and the generation of immunologic diversity, in: Developmental Aspects of Antibody Formation and Structure, Vol. I ( J. Sterzl and I. Riha, eds.), Academic, New York, pp. 69–77.Google Scholar
  86. Smedley, H., Katrak, M., Sikora, K., and Wheeler, T., 1983, Neurological effects of recombinant human interferon, Br. Med. J. 286: 262.CrossRefGoogle Scholar
  87. Sparrow, D., Borkan, G. A., Gerzof, S. G., Wisnniewski, C., and Silbert, J., Diabetes 35: 411.Google Scholar
  88. Steinman, G. G., 1986, Changes in the thymus during aging, Curr. Top. Pathol. 75: 43–88.Google Scholar
  89. Stutman, O., 1978, Intrathymic and extrathymic T cell maturation, Immunol. Rev. 42: 139–184.CrossRefGoogle Scholar
  90. Stutman, O., and Good, R. A., 1971, Immunocompetence of embryonic hemopoietic cells after traffic to thymus, Transplant Proc. 3: 923–925.PubMedGoogle Scholar
  91. Usher, R. H., and McLean, F. H., 1974, Normal fetal growth and the significance of fetal growth retardation, in: Scientific Foundations of Pediatrics ( J. A. Davis and J. Dobbing, eds.) W. B. Saunders, Philadelphia, pp. 69–80.Google Scholar
  92. Vetter, V., Helbing, G., Heit, W., Pirsig, W., Sterzig, K., and Heinze, E., 1985, Clonal proliferation and cell density of chondrocytes isolated from human fetal epiphyseal, human adult articular and nasal cartilage, influence of hormones and growth factors, Growth 49: 229–245.PubMedGoogle Scholar
  93. Watts, T., 1969, Thymus weights in malnourished children, J. Trop. Pediatr. 15: 155–158.PubMedGoogle Scholar
  94. Weksler, M. E., Innes, J. B., and Goldstein, G., 1978, Immunological studies of aging. IV. The contribution of thymic involution to the immune deficiencies of aging mice and reversal with thymopoietin, J. Exp. Med. 148: 996–1006.PubMedCrossRefGoogle Scholar
  95. Wilson, M., Rosen, F. S., Schlossman, S. F., and Reinhoez, E. L., 1985, Ontogeny of human T-cells and B-lymphocytes during stressed and normal gestation: Phenotypic analysis of umbilical cord lymphocytes from term and preterm infants, Clin. Immunol. Immunopathol. 37: 1–12.PubMedCrossRefGoogle Scholar
  96. Winick, M., 1969, Malnutrition and brain development, J. Pediatr. 74: 657–679.Google Scholar
  97. Winick, M., and Rosso, P., 1969, Head circumference and cellular growth of the brain in normal and marasmic children, J. Pediatr. 74: 774–778.PubMedCrossRefGoogle Scholar
  98. Xanthou, M., 1985, Immunologic deficiencies in small-for-date neonates, Acta Paediatr. Scand. Suppl. 319: 143–149.PubMedCrossRefGoogle Scholar
  99. Zamenhof, S., Van Marthens, E., and Margolis, F. L., 1968, DNA (cell number) and protein in neonatal brain: Alteration by maternal dietary protein restriction, Science 160: 322–323.PubMedCrossRefGoogle Scholar
  100. Zinkernagel, R. M., 1978, Thymus and lymphohemopoietic cells: Their role in T cell maturation, in selection of T cells’ H-2-restriction-specificity and in H-2 linked Ir gene control, Immunol. Rev. 42: 224–270.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • George A. Clark
    • 1
  • Nicholas R. Hall
    • 2
    • 3
  • Carolyn M. Aldwin
    • 1
  • Allan L. Goldstein
    • 4
  • R. Clayton Steiner
    • 4
  1. 1.Normative Aging StudyVeterans Administration Outpatient ClinicBostonUSA
  2. 2.Department of Psychiatry and Behavioral MedicineUniversity of South FloridaTampaUSA
  3. 3.Center of PsychoimmunologyUniversity of South FloridaTampaUSA
  4. 4.George Washington University Medical CenterUSA

Personalised recommendations