Advertisement

Brain Amyloidoses

Precursor Proteins and the Amyloids of Transmissible and Nontransmissible Dementias: Scrapie—Kuru—CJD Viruses as Infectious Polypeptides or Amyloid-Enhancing Factors
  • D. Carleton Gajdusek
  • C. Joseph GibbsJr.
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Kuru and the transmissible virus dementias are in a group of virus-induced slow infections that we have described as subacute spongiform virus encephalopathies because of the strikingly similar histopathological lesions they induce. Scrapie, mink encephalopathy, the chronic wasting disease with spongiform encephalopathy of captive mule deer and of captive elk, and bovine spongiform encephalopathy all appear, from their histopathology, pathogenesis, and the similarities of their infectious agents, to belong to the same group (Gajdusek and Gibbs, 1975; Gajdusek et al., 1965, 1966; Hope et al., 1988; Masters et al., 1981a,b; Wilesmith et al., 1988; Williams and Young, 1980, 1982; Williams et al., 1982). The basic neurocytological lesions in all these diseases are a progressive vacuolation in the dendritic and axonal processes and cell bodies of neurons and, to a lesser extent, in astrocytes and oligodendrocytes; an extensive astroglial hypertrophy and proliferation; and spongiform change or status spongiosis of gray matter and extensive neuronal loss (Beck et al., 1975, 1982; Klatzo et al., 1959).

Keywords

Amyotrophic Lateral Sclerosis Prion Protein Amyloid Plaque Bovine Spongiform Encephalopathy Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, F. H., Richardson, E. P., Jr., Okazaki, H., and Brody, J. A., 1979, Neurofibrillary degeneration on Guam. Frequency in Chamorros and non-Chamorros with no known neurological disease, Brain 102: 65–77.PubMedCrossRefGoogle Scholar
  2. Anderton, B. H., Breinburg, D., Downes, M. J., Green, P. J., Tomlinson, B. E., Ulrich, J., Wood, J. N., and Kahn, J., 1982, Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants, Nature (Lond.) 298: 84–86.CrossRefGoogle Scholar
  3. Aoki, T., Gibbs, C. J., Jr., Sotelo, J., and Gajdusek, D. C., 1982, Heterogenic autoantibody against neurofilament protein in the sera of the animals with experimental kuru and Creutzfeldt-Jakob disease and natural scrapie infection, Infection Immun. 38: 316–324.Google Scholar
  4. Austin, J. H., Rinehart, R., Williamson, J., Burear, P., Russ, K., Nikaido, T., and Lafrance, M., 1973, Studies in ageing of the brain. III. Silicon levels in postmortem tissues and body fluids, Prog. Brain Res. 40: 485–495.CrossRefGoogle Scholar
  5. Austin, J. H., 1978, Silicon levels in human tissues, in: Biochemistry of Silicon and Related Problems ( G. Bendz and I. Lindqvist, eds.), Plenum, New York, pp. 255–268.Google Scholar
  6. Autilio-Gambetti, L., Gambetti, P, and Crane, R. C., 1983, Paired helical filaments: Relatedness to neurofilaments shown by silver staining and reactivity with monoclonal antibodies, in: Biological Aspects of Alzheimer’s Disease (R. Katzman, ed.), Banbury Report 15, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 117–124.Google Scholar
  7. Bahmanyar, S., Moreau-Dubois, M. C., Brown, P., and Gajdusek, D. C., 1983, Serum antineurofila- ment antibodies in patients with neurological and non-neurological disorders and healthy controls using rat spinal cord, J. Neuroimmunol. 5: 191–196.PubMedCrossRefGoogle Scholar
  8. Bahmanyar, S., Liem, R. K. H., Griffin, J. W., and Gajdusek, D. C., 1984, Characterization of antineurofilament autoantibodies in Creutzfeldt-Jakob disease, J. Neuropathol. Exp. Neurol. 43: 369–375.PubMedCrossRefGoogle Scholar
  9. Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shankar, S. K., and Gajdusek, D. C., 1987, Localization of amyloid p-protein messenger RNA in brains from Alzheimer’s disease patients, Science 237: 77–80.PubMedCrossRefGoogle Scholar
  10. Baringer, J. R., Wong, J., Klassen, T., and Prusiner, S. B., 1979, Further observations of the neuropathology of experimental scrapie in mouse and hamster, in: Slow Transmissible Diseases of the Nervous System, Vol. 2. ( S. B. Prusiner and W. J. Halow, eds.), Academic, New York, pp. 111–121.Google Scholar
  11. Baringer, J. R., Prusiner, S. B., and Wong, J. S., 1981, Scrapie-associated particles in postsynaptic processes. Further ultrastructural studies, Neuropathol. Exp. Neurol. 40: 281–288.CrossRefGoogle Scholar
  12. Beck, E., Bak, I. J., Christ, J. F., Gajdusek, D. C., Gibbs, C. J., Jr., and Hassler, R., 1975, Experimental kuru in the spider monkey. Histopathological and ultrastructural studies of the brain during early stages of incubation, Brain 98: 595–612.PubMedCrossRefGoogle Scholar
  13. Beck, E., Daniel, P. M., Davey, A. J., Gajdusek, D. C., and Gibbs, C. J., Jr., 1982, The pathogenesis of spongiform encephalopathies: An ultrastructural study, Brain 105: 755–786.PubMedCrossRefGoogle Scholar
  14. Bendheim, P. E., Barry, R. A., DeArmond, S. J., Stites, D. P., and Prusiner, S. B., 1984, Antibodies to a scrapie-prion protein, Nature (Lond.) 310: 418–421.CrossRefGoogle Scholar
  15. Bendheim, P. E., Bockman, J. O., McKinley, M. P., Kingsbury, D. T., and Prusiner, S. B., 1985, Scrapie and Creutzfeldt-Jakob disease prion proteins share physical properties and antigenic determinants, Proc. Natl. Acad. Sci. USA 82: (February), 997–1001.PubMedCrossRefGoogle Scholar
  16. Bizzi, A., Crane, R. C., and Autilio-Gambetti, L., and Gambetti, P., 1984, Aluminum effect on slow axonal transport: A novel impairment of neurofilament transport, J. Neurosci. 4: 722–731.PubMedGoogle Scholar
  17. Bockman, J. M., Kingsbury, D. T., McKinley, M. P., Bendheim, P. E., and Prusiner, S. B., 1985, Creutzfeldt-Jakob disease prion proteins in human brains, N. Engl. J. Med. 312: 73–78.PubMedCrossRefGoogle Scholar
  18. Bolton, D. C., McKinley, M. P., and Prusiner, S. B., 1982, Identification of a protein that purifies with the scrapie prion, Science 218: 1309–1311.PubMedCrossRefGoogle Scholar
  19. Bolton, D. C., McKinley, M. P., and Prusiner, S. B., 1984, Molecular characteristics of the major scrapie prion protein, Biochemistry 23: 5898–5905.PubMedCrossRefGoogle Scholar
  20. Bolton, D. C., Meyer, R. K., and Prusiner, S. B., 1985, Scrapie PrP 27–30 is a sialoglycoprotein, J. Virol. 53: 596–606.PubMedGoogle Scholar
  21. Borras, M. T., and Gibbs, C. J., Jr., 1986, Molecular hybridization studies with scrapie brain nucleic acids. I. Search for specific DNA sequences, Arch. Virol. 88: 67–78.PubMedCrossRefGoogle Scholar
  22. Borras, M. T., Kingsbury, D. T., Gajdusek, D. C., and Gibbs, C. J., Jr., 1982, Inability to transmit scrapie by transfection of mouse embryo cells in vitro, J. Gen. Virol. 58: 263–271.CrossRefGoogle Scholar
  23. Borras, M. T., Merendino, J. J., and Gibbs, C. J., Jr., 1986, Molecular hybridization studies with scrapie brain nucleic acids. II. Differential expression in scrapie hamster brains, Arch. Virol. 88: 79–90.PubMedCrossRefGoogle Scholar
  24. Braig, H. R., and Diringer, H., 1985, Scrapie: Concept of a virus induced amyloidosis of the brain, Eur. J. Mol. Biol. 4: 2309–2311.Google Scholar
  25. Brown, P., Gibbs, C. J., Jr., Amyx, H. L., Kingsbury, D. T., Rohwer, R. G., Sulima, M. P., and Gajdusek, D. C., 1982a, Chemical disinfection of Creutzfeldt-Jakob disease virus, N. Engl. J. Med. 306: 1279–1282.PubMedCrossRefGoogle Scholar
  26. Brown, P., Rohwer, R. G., Green, E. M., and Gajdusek, D. C., 1982b, Effect of chemicals, heat and histopathological processing on high infectivity hamster-adapted scrapie virus, J. Infect. Dis. 145: 683–687.PubMedCrossRefGoogle Scholar
  27. Brown, P., Rohwer, R. G., and Gajdusek, D. C., 1984, Sodium hydroxide decontamination of Creutzfeldt-Jakob disease virus, N. Engl. J. Med. 310: 727.PubMedGoogle Scholar
  28. Brown, P., Gajdusek, D. C., Gibbs, C. J., Jr., and Asher, D. M., 1985, Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy, N. Engl. J. Med. 313: 728–731.PubMedCrossRefGoogle Scholar
  29. Brown, P., Coker-Vann, M., Pomeroy, B. S., Asher, D. M., Gibbs, C. J., Jr., and Gajdusek, D. C., 1986a, Diagnosis of Creutzfeldt-Jakob disease by Western blot identification of marker protein in human brain tissue, N. Engl. J. Med. 314: 547–551.PubMedCrossRefGoogle Scholar
  30. Brown, P., Rohwer, R. G., and Gajdusek, D. C., 1986b, Newer data on the inactivation of scrapie virus or Creutzfeldt-Jakob disease virus in brain tissue, J. Infect. Dis. 153: 1145–1148.PubMedCrossRefGoogle Scholar
  31. Brown, P., Rohwer, R. G., and Gajdusek, D. C., 1986b, Newer data on the inactivation of scrapie virus or Creutzfeldt-Jakob disease virus in brain tissue, J. Infect. Dis. 153: 1145–1148.PubMedCrossRefGoogle Scholar
  32. Candy, J. M., Oakley, A. E., Klinowski, J., Carpenter, T. A., Peny, R. H., Atack J. R., Perry, E. K., Blessed, G., Fairbairn, A., and Edwardson, J. A., 1986, Aluminosilicates contribute to senile plaque formation in Alzheimer’s disease, Lancet 1: 354–356.PubMedCrossRefGoogle Scholar
  33. Candy, J. M., Oakley, A. E., Klinowski, J., Carpenter, T. A., Peny, R. H., Atack J. R., Perry, E. K., Blessed, G., Fairbairn, A., and Edwardson, J. A., 1986, Aluminosilicates contribute to senile plaque formation in Alzheimer’s disease, Lancet 1: 354–356.PubMedCrossRefGoogle Scholar
  34. Chen, L., 1981, Neurofibrillary change on Guam, Arch. Neurol. 38: 16–18.PubMedGoogle Scholar
  35. Cohen, M. L., Golde, T. E., Usiak, M. F., Younkin, L. H., and Younkin, S.’ G., 1988, In situ hybridization of nucleus basalis neurons shows increased p-amyloid mRNA in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 85: 1227–1231.PubMedCrossRefGoogle Scholar
  36. Connors, L. H., 1985, In vitro formation of amyloid fibrils, Biochem. Biophys. Res. Commun. 131: 1063–1068.PubMedCrossRefGoogle Scholar
  37. Dahl, D., and Bignami, A., 1985, Two different populations of neurofibrillary tangles in Alzheimer’s dementias revealed by neurofilament immunoreactivity and Congo Red staining, in: Molecular Mechanisms of Pathogenesis of Central Nervous System Disorders (A. Bignami, L. Bolis, and D. C. Gajdusek, eds.), Discussions in Neuroscience, Vol. 3: 80–82.Google Scholar
  38. David-Ferreira, J. F., David-Ferreira, K. L., Gibbs, C. J., Jr., and Morris, J. A., 1968, Scrapie in mice: Ultrastructural observations in the cerebral cortex, Proc. Soc. Exp. Biol. Med. 127: 313–320.PubMedGoogle Scholar
  39. Delabar, J-M., Goldgaber, D., Lamour, Y., Nicole, A., Huret, J-L., DeGrouchy, J., Brown, P., Gajdusek, D. C., and Sinet, P-M., 1987, 0-Amyloid gene duplication in Alzheimer’s disease and karyotypically normal Down syndrome, Science 235: 1390–1392.Google Scholar
  40. Denning, P. J., 1988, The science of computing. Computer viruses, Am. Sci. 76: 236–238.Google Scholar
  41. Dewdney, A. K., 1984, Computer recreations: In the game called Core Wars hostile program’s engage in a battle of bits, Sci. Am. 250:14, 18–20, 22.Google Scholar
  42. Dewdney, A. K., 1985a, Computer recreations: A core war bestiary of viruses, worms and other threats to computer memories, Sci. Am. 252: 14, 19–23.Google Scholar
  43. Dewdney, A. K., 1985b, Analog gadgets that solve a diversity of problems and array of questions, Sci. Am. 252:18,22,24,25, 28, 29.CrossRefGoogle Scholar
  44. Diener, T., and Hadidi, A., 1977, Viroids, in: Comprehensive Virology, Vol. 11 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 285–337, Plenum, New York.Google Scholar
  45. Diringer, H., Gelderblom, H., Hilmert, H., Ozel, M., Edelbluth, C., and Kimberlin, R. H., 1983, Scrapie infectivity, fibrils, and low molecular weight protein, Nature (Lond.) 306: 476–478.CrossRefGoogle Scholar
  46. Field, E. J., and Narang, H. K., 1972, An electron microscopic study of natural scrapie in the rat: Further observations on “inclusion bodies” and virus-like particles, J. Neurol. Sci. 17: 347–364.PubMedCrossRefGoogle Scholar
  47. Field, E. J., Mathews, J. D., and Raine, C. S., 1969, Electron microscopic observations on the cerebellar cortex in kuru, J. Neurol. Sci. 8: 209–224.PubMedCrossRefGoogle Scholar
  48. Fukatsu, R., Gibbs, C. J., Jr., Amyx, H. L., and Gajdusek, D. C., 1984a, Amyloid plaque formation along the needle track in experimental murine scrapie, J. Neuropathol. Exp. Neurol. 43: 313.CrossRefGoogle Scholar
  49. Fukatsu, R., Gibbs, C. J., Jr., and Gajdusek, D. C., 1984b, Cerebral amyloid plaques in experimental murine scrapie, in: Proceedings of the Workshop on Slow Transmissible Diseases (J. Tateishi, ed.), Research Committee on Slow Virus Infections, Japanese Ministry of Health, August 31, Tokyo, pp. 71–84.Google Scholar
  50. Gajdusek, D. C., 1977, Unconventional viruses and the origin and disappearance of kuru, Science 197: 943–960.PubMedCrossRefGoogle Scholar
  51. Gajdusek, D. C., 1984, Interference with axonal transport of neurofilament: The underlying mechanism of pathogenesis in Alzheimer’s disease, amyotrophic lateral sclerosis and many other degenerations of the CNS, The Merrimon Lecture, School of Medicine, University of North Carolina, Chapel Hill.Google Scholar
  52. Gajdusek, D. C., 1985a, Hypothesis: Interference with axonal transport of neurofilament as a common pathogmatic mechanism in certain diseases of the central nervous system, N. Engl. J. Med. 312: 711–719.CrossRefGoogle Scholar
  53. Gajdusek, D. C., 1989b, Unconventional viruses causing subacute spongiform encephalopathies, in: Virology (B. N. Fields et al., eds.), 2nd edition, Raven, New York.Google Scholar
  54. Gajdusek, D. C., 1985c, Subacute spongiform virus encephalopathies caused by unconventional viruses, in: Subviral Pathogens of Plants and Animals: Viroids and Prions ( K. Maramorosch, ed.), Academic, Orlando, Florida, pp. 483–544.Google Scholar
  55. Gajdusek, D. C., 1989a, Cycad toxicity not the cause of high incidence amyotrophic lateral scle- rosis/Parkinsonism-dementia on Guam, Kii Peninsula of Japan or in West New Guinea, in: Amyotrophic Lateral Sclerosis: concepts in Pathogenesis and Etiology ( A.J. Hudson, ed.), University of Toronto Press, Toronto.Google Scholar
  56. Gajdusek, D. C., 1988b, Etiology versus pathogenesis: The causes of post-translational modifications of host specified brain proteins to amyloid configuration, in: Abstracts of the génétique et maladie d’Alzheimer, 174–176, Foundation IPSEN pour la Recherche Thérapeutique, Paris.Google Scholar
  57. Gajdusek, D. C., and Gibbs, C. J., Jr., 1975, Slow virus infections of the nervous system and the laboratories of slow, latent and temperate virus infections, in: The Nervous System (D. B. Tower, ed.), Vol. 2: The Clinical Neurosciences ( T. N. Chase, ed.), Raven Press, New York, pp. 113–135.Google Scholar
  58. Gajdusek, D. C., and Salazar, A., 1982, Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among Anga and Jakai peoples of West New Guinea, Neurology (NY) 32: 107–126.Google Scholar
  59. Gajdusek, D. C., and Zigas, V., 1957, Degenerative disease of the central nervous system in New Guinea. The endemic occurrence of “kuru” in the native population, N. Engl. J. Med. 257:974– 978.Google Scholar
  60. Gajdusek, D. C., and Zigas, V., 1959, Kuru: Clinical, pathological and epidemiological study of an acute progressive degenerative disease of the central nervous system among natives of the Eastern Highlands of New Guinea, Am. J. Med. 26: 442–469.PubMedCrossRefGoogle Scholar
  61. Gajdusek, D. C., Gibbs, C. J., Jr., and Alpers, M. (eds.), 1965, Slow, Latent and Temperate Virus Infections, NINCDB Monograph No. 2, National Institutes of Health, PHS Publication No. 1378, U.S. Government Printing Office, Washington, D. C.Google Scholar
  62. Gajdusek, D. C., Gibbs, C. J., Jr., and Alpers, M., 1966, Experimental transmission of a kuru-like syndrome in chimpanzees, Nature (Lond.) 209: 794–796.CrossRefGoogle Scholar
  63. Gambetti, P., Autilio-Gambetti, L., Perry, G., Shecket, G., and Crane, R. C., 1983a, Antibodies to neurofibrillary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions, Lab. Invest. 49: 430–435.PubMedGoogle Scholar
  64. Gambetti, P., Shecket, G., Ghetti, B., Hirano, A. and Dahl, D., 1983b, Neurofibrillary changes in human brain. An immunocytochemical study with a neurofilament antiserum, J. Neuropathol. Exp. Neurol. 42: 69–79.PubMedCrossRefGoogle Scholar
  65. Garruto, R. M., Yanagihara, R., Arion, D. M., Daum, C. A., and Gajdusek, D. C., 1982, Bibliography of Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia of Guam, National Institutes of Health, Bethesda, U.S. Government Printing Office, Washington, D.C.Google Scholar
  66. Garruto, R. M., Fukatsu, R., Yanagihara, R., Gajdusek, D. C., Hook, G., and Fiori, C. E., 1984, Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism—dementia of Guam, Proc. Natl. Acad. Sci. USA 81: 875–879.CrossRefGoogle Scholar
  67. Garruto, R. M., Swyt, C., Yanagihara, R., Fiori, C. E., and Gajdusek, D. C., 1986, Intraneuronal colocalization of silicon with calcium and aluminum in amyotrophic lateral sclerosis and parkinsonism with dementia of Guam, N. Engl. J. Med. 315: 711–712.PubMedCrossRefGoogle Scholar
  68. Geisler, N., Plassmann, U., and Weber, K., 1985, The complete amino acid sequence of the major mammalian neurofilament protein (NF-L), Fed. Eur. Biol. Soc. 182: 475–478.CrossRefGoogle Scholar
  69. Gibbs, C. J., Jr., Gajdusek, D. C. and Latarjet, R., 1977, Unusual resistance to UV and ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie (unconventional viruses), Proc. Natl. Acad. Sci. USA 75: 6268–6270.CrossRefGoogle Scholar
  70. Gibbs, C. J., Jr., Gajdusek, D. C., Asher, D. M., Alpers, M. P., Beck, E., Daniel, P. M., and Matthews, W. B., 1968, Creutzfeldt-Jakob disease (subacute spongiform encephalopathy): Transmission to the chimpanzee, Science 161: 388–389.PubMedCrossRefGoogle Scholar
  71. Glenner, G. G., and Won, C. W., 1984a, Alzheimer’s disease: Report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120: 885–890.PubMedCrossRefGoogle Scholar
  72. Glenner, G. G., and Wong, C. W., 1984b, Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular fibril protein, Biochem. Biophys. Res. Commun. 122: 1131–1135.PubMedCrossRefGoogle Scholar
  73. Glenner, G. G., and Wong, C. W., 1984b, Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular fibril protein, Biochem. Biophys. Res. Commun. 122: 1131–1135.PubMedCrossRefGoogle Scholar
  74. Goldgaber, D., Goldfarb, L. G., Brown, P., Asher, D. M., Brown, W. T., Lin, S., Teener, J. W., Feinstone, S. M., Rubenstein R., Kascsak, R. J., Boellard, J. W., and Gajdusek, D. C., 1989, Mutations in familial Creutzfeldt-Jakob disease and Gerstmann-Straussler’s syndrome, Experimental Neurology 106: 515–528.CrossRefGoogle Scholar
  75. Goldgaber, D., Lerman, M., McBride, W., Saffiotti, U., and Gajdusek, D. C., 1987a, Isolation, characterization and chromosomal localization of cDNA clones coding for the precursor protein of amyloid of brain in Alzheimer disease, Down’s syndrome, and aging, in: ( S. H. Corkin and J. H. Growden, eds.) Advances in Basic Research Therapies. Proceedings of the Fourth Meeting of the International Study Group on the Pharmacology of Memory Disorders Associated with Aging, Zurich, Switzerland, January 16–18, 1987, Center for Brain Science and Metabolism Charitable Trust, Cambridge, Massachusetts, 1987, pp. 209–217.Google Scholar
  76. Goldgaber, D., Lerman, M., McBride, W., Saffiotti, U., and Gajdusek, D. C., 1987/?, Characterization and chromosomal localization of cDNA encoding brain amyloid of Alzheimer’s disease, Science 235: 877–880.Google Scholar
  77. Goldgaber, D., Teener, J. W., and Gajdusek, D. C., 1988, Alternative cDNA clones of amyloid (β-protein precursor gene encode proteinase inhibitor, Disc. Neurosci. 5: 40.Google Scholar
  78. Goldgaber, D., Teener, J. W., and Gajdusek, D. C., 1988, Alternative cDNA clones of amyloid (β-protein precursor gene encode proteinase inhibitor, Disc. Neurosci. 5: 40.Google Scholar
  79. Grundke-Iqbal, I., Iqbal, K., Tung, Y.-C., Quinlan, M., Wiesniewski, H., and Binder, L. I., 1986, Abnormal phosphorylation of the microtubule-associated protein t (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA 83: 4913–4917.PubMedCrossRefGoogle Scholar
  80. Guiroy, D. C., and Gajdusek, D. C., 1988, Fibril-derived amyloid enhancing factors as nucleating agents in Alzheimer’s disease and transmissible virus dementias, Disc. Neurosci. 5: 69–73.Google Scholar
  81. Guiroy, D. C., Miyazaki, M., Multhaup, G., Fischer, P., Garruto, R. M., Beyreuther, K., Masters, C., Simms, G., Gibbs, C. J., Jr., and Gajdusek, D.C., 1987, Amyloid of neurofibrillary tangles of Guamanian parkinsonism-dementia and Alzheimer’s disease share identical amino acid sequence, Proc. Natl. Acad. Sci. 84: 2073–2077.PubMedCrossRefGoogle Scholar
  82. Haig, D. C., Clarke, M. C., Blum, E., and Alper, T., 1969, Further studies on the inactivation of the scrapie agent by ultraviolet light, J. Gen. Virol. 5: 455–457.CrossRefGoogle Scholar
  83. Higgins, G. A., Lewis, D. A. Bahmanyar, S., Goldgaber, D., Gajdusek, D. C., Young, W. G., Morrison, J. H., and Wilson, M. C., 1988, Differential regulation of amyloid (β-protein mRNA expression with hippocampal neuronal subpopulations in Alzheimer disease, Proc. Natl. Acad. Sci. USA 85: 1297–1301.Google Scholar
  84. Hirano, A., and Inoue, K., 1980, [Early pathological changes in amyotrophic lateral sclerosis. Electron microscopic study of chromatolysis, spheroids, and Bunina bodies], Neurol. Med. (Tokyo) 13:148–160.Google Scholar
  85. Hirano, A., Donnenfeld, H., Sasaki, S., and Nakano, I., 1984a, Fine structural observations of neu- rofilamentous changes in amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol. 43: 461–470.PubMedCrossRefGoogle Scholar
  86. Hirano, A., Nakano, I., Kurland, L. T., Mulder, D. W., Holley, P. W., and Saccomanno, G., 1984b, Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol 43: 471–480.PubMedCrossRefGoogle Scholar
  87. Hope, J., Reekie, L. J. D., Hunter, N., Multhaup, G., Beyreuther, K., White, H., Scott, A. C., Stack, M. J., Dawson, M., and Wells, G. A. H., 1988, Fibrils from brains of cows with new cattle disease contain scrapie-associated protein, Nature 336: 390–392.PubMedCrossRefGoogle Scholar
  88. Hsiao, K., Baker, H. F., Crow, T. J., Poulter, N., Owen, F., Terwilliger, J. D., Westaway, D., Ott, J., and Prusiner, S. B., 1989, Linkage of a prion protein missense variant to Gerstmann-Strassler syndrome, Nature 338: 342–345.PubMedCrossRefGoogle Scholar
  89. Hsiao, K., Doh-ura, K., Kitamoto, T., Tateishi, J., and Prusiner, S. B., 1989, A prion protein amino acid substitution in ataxic Gerstmann-Strassler syndrome, Ann. Neurol. (Abstr.) 26: 137.Google Scholar
  90. Hunter, G. D., Collis, S. C., Millson, G. C., and Kimberlin, R. H., 1976, Search for scrapie-specific RNA and attempts to detect an infectious DNA or RNA, J. Gen. Virol. 32: 157–162.PubMedCrossRefGoogle Scholar
  91. Iler, R. K., 1985, Hydrogen-bond complexes of silicon with organic compounds, in: Biochemistry of Silicon and Related Problems ( G. Bendz and I. Lindqvist, ed.), Plenum, New York, pp. 53–76.Google Scholar
  92. Inoue, K., and Hirano, A., 1979, [Early pathological changes in amyotrophic lateral sclerosis. Autopsy findings of a case of ten months duration], Neurol. Med. (Tokyo) 11: 448–455.Google Scholar
  93. Kang, J., Lemaire, H-G., Unterbeck, A., Slabaum, J. M., Masters, C. L., Grzeschik, K-H., Multhaup, G., Beyreuther, K., Muller-Hill, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature (Lond.) 1: 733–736.CrossRefGoogle Scholar
  94. Kasper, K. C., Bowman, K., Stites, D. P., and Prusiner, S. B., 1981, Toward development of assays for scrapie-specific antibodies, in: Hamster Immune Responses in Infectious and Oncogenic Diseases ( J. W. Streilein, D. A. Hart, J. Stein-Sterilein, W. R. Duncan, and R. E. Billingham, eds.), Plenum, New York, pp. 401–413.Google Scholar
  95. Kidd, M., Allsop, D., and Landon, M., 1985, Senile plaque amyloid, paired helical filaments and cerebrovascular amyloid in Alzheimer’s disease are all deposits of the same protein, Lancet 1: 278.PubMedCrossRefGoogle Scholar
  96. Kingsbury, D. T., Prusiner, S. B., Bockman, J. M., McKinley, M. P., and Barry, R. A., 1985, Reply to the Editor: Laura Manuelidis: Creutzfeldt-Jakob disease prion proteins in human brains, N. Engl. J. Med. 312: 1644–1645.Google Scholar
  97. Kirschner, D. A., Abraham, C., and Selkoe, D. J., 1986, X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross (3-conforma- tion, Proc. Natl. Acad. Sci. USA 83: 503–507.PubMedCrossRefGoogle Scholar
  98. Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., and Ito, H., 1988, Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature (Lond.) 331: 530–532.CrossRefGoogle Scholar
  99. Kitramoto, T., Tateishi, J., Tashima, T., Takeshita, I., Barry, R. A., DeArmond, S. J., and Prusiner, S. B., 1986, Amyloid plaques in Creutzfeldt-Jakob disease stain with prion protein antibodies, Ann. Neurol. 20: 204–208.CrossRefGoogle Scholar
  100. Klatzo, I., Gajdusek, D. C., and Zigas, V., 1959, Pathology of kuru, Lab. Invest. 8: 799–847.PubMedGoogle Scholar
  101. Klatzo, I., Wisniewski, H., and Streicher, E. J., 1965, Experimental production of neurofibrillary degeneration. 1. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24: 187–199.PubMedCrossRefGoogle Scholar
  102. Kosik, K. S., Joachim, C. L., and Selkoe, D. J., 1986, Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83: 4044–4048.PubMedCrossRefGoogle Scholar
  103. Lamar, C. H., Gustafson, D. P., Krashnovich, M., and Hinsman, E. J., 1974, Ultrastructural studies of spleens, brains and brain cell cultures of mice with scrapie, Vet. Pathol. 11: 13–19.PubMedCrossRefGoogle Scholar
  104. Lampert, P. W., Gajdusek, D. C., and Gibbs, C. J., Jr., 1971, Experimental spongiform encephalopathy (Creutzfeldt-Jakob disease) in chimpanzees. Electron microscopic studies, Presented at a meeting of the American Association of Pathologists and Bacteriologists, St. Louis, March 7, 1970, J. Neuropathol. Exp. Neurol. 30: 20–32.Google Scholar
  105. Latarjet, R., 1979, Inactivation of the agents of scrapie, Creutzfeldt-Jakob disease and kuru by radia- tion, in: Slow Transmissible Diseases of the Nervous System, Vol. 2 ( S. B. Prusiner and W. J. Hadlow, eds.), pp. 387–407, Academic, New York.Google Scholar
  106. Latarjet, R., Muel, B., Haig, D. A., Clarke, M. C. and Alper, T., 1970, Inactivation of the scrapie agent by near-monochromatic ultraviolet light, Nature (Lond.) 227: 1341–1343.CrossRefGoogle Scholar
  107. Lewis, S. A., and Cowan, N. J., 1985, Genetics, evolution, and expression of the 68,000-molecular-weight neurofilament protein: Isolation of a cloned cDNA probe, J. Cell Biol. 100: 843–850.PubMedCrossRefGoogle Scholar
  108. Manuelidis, L., 1985, Creutzfeldt—Jakob disease prion proteins in human brains (Letter to the editor), N. Engl. J. Med. 312: 1643–1644.PubMedGoogle Scholar
  109. Manuelidis, L., and Manuelidis, E. E., 1983, Fractionation and infectivity studies in Creutzfeldt—Jakob disease, in: Biological Aspects of Alzheimer’s Disease, Banbury Report No. 15 (R. Katzman, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 399–412.Google Scholar
  110. Manuelidis, L., Valley, S., and Manuelidis, E. E., 1985, Specific proteins associated with Creutzfeldt- Jakob disease and scrapie share antigenic and carbohydrate determinants, Proc. Natl. Acad. Sci. USA 82: 4263–4267.PubMedCrossRefGoogle Scholar
  111. Masters, C. L., Gajdusek, D. C., and Gibbs, C. J., Jr., 1981a, The familial occurrence of Creutzfeldt- Jakob disease and Alzheimer’s disease, Brain 104: 535–558.PubMedCrossRefGoogle Scholar
  112. Masters, C. L., Gajdusek, D. C., and Gibbs, C. J., Jr., 1981b, Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Straussler syndrome, with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies, Brain 104: 559–588.PubMedCrossRefGoogle Scholar
  113. Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., and Beyreuther, K., 1985a, Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels, Eur. J. Mol. Biol. 4: 2757–2763.Google Scholar
  114. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K., 1985b, Amyloid plaque core protein in Alzheimer’s disease and Down’s syndrome, Proc. Natl. Acad. Sci. USA 82: 4245–4249.PubMedCrossRefGoogle Scholar
  115. McFarlin, D. E., Rott, M. C., Simpson, L., and Nehlson, S., 1971, Scrapie in immunologically deficient mice, Nature (Lond.) 233: 336.CrossRefGoogle Scholar
  116. McPherson, A., and Schlichta, P., 1988, Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces, Science 239: 385–387.PubMedCrossRefGoogle Scholar
  117. Merz, P. A., Somerville, R. A., Wisniewski, H. M., and Iqbal, K., 1981, Abnormal fibrils from scrapie-infected brain, Acta Neuropathol. (Berl.) 54: 63–74.CrossRefGoogle Scholar
  118. Merz, P. A., Rohwer, R. G., Kascsak, R., Wisniewski, H. M., Somerville, R. A., Gibbs, C. J., Jr., and Gajdusek, D. C., 1984a, Identification of a disease-specific particle in scrapie-like slow virus diseases, Science 225: 437–440.PubMedCrossRefGoogle Scholar
  119. Merz, P. A., Somerville, R. A., Wisniewski, H. M., Manuelidis, L., and Manuelidis, E. E., 1984b, Scrapie associated fibrils in Creutzfeldt-Jakob disease, Nature (Lond.) 306: 474–476.CrossRefGoogle Scholar
  120. Merz, P. A., Wisniewski, H. M., Rubenstein, R., and Kascsak, R. J., 1986, Immunological studies on paired helical filaments and amyloid of Alzheimer’s disease, Disc. Neurosci. 3: 58–68.Google Scholar
  121. Multhaup, G., Diringer, H., Hilmert, H., Prinz, H., Heukeshoven, J., and Beyreuther, K., 1985, The protein component of scrapie-associated fibrils is a glycosylated low-molecular-weight protein, Eur. J. Mol. Biol 4: 1495–1501.Google Scholar
  122. Narang, H. K., 1973, Virus-like particles in natural scrapie of the sheep, Res. Vet. Sci. 14: 108–110.PubMedGoogle Scholar
  123. Narang, H. K., 1974a, An electron microscopic study of natural scrapie sheep brain: Further observations on virus-like particles and paramyxovirus-like tubules, Acta Neuropathol. (Berl.) 28:317– 329.CrossRefGoogle Scholar
  124. Narang, H. K., 1974b, An electron microscopic study of the scrapie mouse and rat: Further observations on virus-like particles with ruthenium red and lanthanum nitrate as a possible trace and negative stain, Neurobiology 4: 349–363.PubMedGoogle Scholar
  125. Narang, H. K., Shenton, B. K., Giorgi, P. P., and Field, E. J., 1972, Scrapie agent and neuron, Nature (Lond.) 240: 105–107.CrossRefGoogle Scholar
  126. Narang, H. K., Chandler, R. L., and Anger, H. S. 1980, Further observations on particulate structures in scrapie affected brain, Neuropathol. Appl. Neurobiol. 6: 23–28.PubMedCrossRefGoogle Scholar
  127. Narang, H. K., Asher, D. M., and Gajdusek, D. C., 1987, Tubulofilaments in negatively stained scrapie-infected brains: Relationship to scrapie-associated fibrils, Proc. Natl. Acad. Sci. USA 84: 7730–7734.PubMedCrossRefGoogle Scholar
  128. Narang, H. K., Asher, D. M., and Gajdusek, D. C., 1988, Evidence that DNA is present in abnormal tubulofilamentous structures found in scrapie, Proc. Natl. Acad. Sci. USA 85: 3575–3579.PubMedCrossRefGoogle Scholar
  129. Niewold, Th. A., Hoi, P. R., van Andel, A. C. J., Lutz, E. T. G., and Gruys, E., 1987, Enhancement of amyloid induction by amyloid fibril fragments in hamsters, Lab. Invest. 56: 544–549.PubMedGoogle Scholar
  130. Nikaido, T., Austin, J., Truch, L., and Reinhart, R., 1972, Studies in ageing of the brain. II. Microchemical analyses of the nervous system in Alzheimer patients, Arch. Neurol. 27: 549–554.PubMedGoogle Scholar
  131. Oesch, B., Westaway, D., Walchli, M., McKinley, M. P., Kent, S. B. H., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., Hood, L. E., Prusiner, S. B., and Weissmann, C., 1985, A cellular gene encodes scrapie PrP 27–30 protein, Cell 40: 735–746.PubMedCrossRefGoogle Scholar
  132. Owen, F., Poulter, M., Lofthouse, R., Collinge, J., Crow, T. J., Rishy, D., Baker, H. F., Ridley, R. M., Hsiao, K., and Prusiner, S. B., 1989, Insertion in prion protein gene in familial Creutzfeldt—Jakob disease, Lancet 1: 51–52.PubMedCrossRefGoogle Scholar
  133. Perl, D. P., and Brody, A. R., 1980, Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science 208: 297–299.PubMedCrossRefGoogle Scholar
  134. Perl, D. P., Gajdusek, D. C., Garruto, R. M., Yanagihara, R. T., and Gibbs, C. J., Jr., 1982, Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam, Science 217: 1053–1055.PubMedCrossRefGoogle Scholar
  135. Perl, D. P., Gajdusek, D. C., Garruto, R. M., Yanagihara, R. T., and Gibbs, C. J., Jr., 1982, Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam, Science 217: 1053–1055.PubMedCrossRefGoogle Scholar
  136. Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K. Wallace, W., Lieberburg, I., Fuller, F., and Cordell, B., 1988, A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors, Nature (Lond.) 331: 525–527.Google Scholar
  137. Prusiner, S. B., 1982, Novel proteinaceous infectious particles cause scrapie, Science 216: 136–144.PubMedCrossRefGoogle Scholar
  138. Prusiner, S. B., 1984, Some speculations about prions, amyloid and Alzheimer’s disease, N. Engl. J. Med. 310: 661–663.PubMedCrossRefGoogle Scholar
  139. Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Benheim, P. D., Groth, D. F., and Glenner, G. G., 1983, Scrapie prions aggregate to form amyloid-like birefringent rods, Cell 35: 349–358.PubMedCrossRefGoogle Scholar
  140. Prusiner, S. B., Groth, D. F., Bolton, D. C., Kent, S. B., and Hood, L. E., 1984, Purification and structural studies of a major scrapie prion protein, Cell 38: 127–134.PubMedCrossRefGoogle Scholar
  141. Rasool, C. G., and Selkoe, D. J., 1985, Sharing of specific antigens by degenerating neurons in Pick’s disease and Alzheimer’s disease, N. Engl. J. Med. 312: 700–705.PubMedCrossRefGoogle Scholar
  142. Rees, S., and Cragg, B., 1983, Is silica involved in neuritic (senile) plaque formation?, Acta Neuropathol. 59: 31–40.PubMedCrossRefGoogle Scholar
  143. Robakis, N. K., Wisnieski, H. M., Jenkins, E. C., Devine-Gage, E. A., Housck, G. E., Xiu-Lan Yao, Ramakrishna, N., Wolfe, G., Silverman, W. P., and Brown, W. T., 1987, Chromosome 21q21 sublocalization of gene encoding β-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down syndrome, Lancet 1: 384.PubMedCrossRefGoogle Scholar
  144. Robertson, H. D., Branch, A. D., and Dahlberg, J. E., 1985, Focusing on the nature of the scrapie agent, Cell 40: 725–727.PubMedCrossRefGoogle Scholar
  145. Rohwer, R. G., 1984a, Scrapie shows a virus-like sensitivity to heat inactivation, Science 223: 600–602.PubMedCrossRefGoogle Scholar
  146. Rohwer, R. G., 1984b, Scrapie: Virus-like size and virus-like susceptibility to inactivation of the infectious agent, Nature (Lond.) 308: 658–662.CrossRefGoogle Scholar
  147. Rohwer, R. G., 1984c, Scrapie-associated fibrils (Letter to the editor), Lancet 2: 36.PubMedCrossRefGoogle Scholar
  148. Rohwer, R. G., 1990, Growth kinetics of hamster scrapie strain 263K: Sources of slowness in a slow virus infection, Virology, Raven Press, New York.Google Scholar
  149. Rohwer, R. G., and Gajdusek, D. C., 1980, Scrapie—virus or viroid: The case for a virus, in: Search for the Cause of Multiple Sclerosis and Other Chronic Diseases of the Central Nervous System, Proceedings of the First International Symposium of the Hertie Foundation, Frankfurt am Main, September, 1979 ( A. Boese, ed.), Verlag Chemie, Weinheim, pp. 333–355.Google Scholar
  150. Rohwer, R. G., Brown, P. W., and Gajdusek, D. C., 1979, The case of sedimentation to equilibrium as a step in the purification of the scrapie agent, in: Slow Transmissible Diseases of the Nervous System ( S. B. Prusiner and W. J. Hadlow, eds.), Academic, New York, pp. 465–478.Google Scholar
  151. Rohwer, R. G., Brown, P. W., and Gajdusek, D. C., 1979, The case of sedimentation to equilibrium as a step in the purification of the scrapie agent, in: Slow Transmissible Diseases of the Nervous System ( S. B. Prusiner and W. J. Hadlow, eds.), Academic, New York, pp. 465–478.Google Scholar
  152. Rohwer, R. G., Brown, P. W., and Gajdusek, D. C., 1979, The case of sedimentation to equilibrium as a step in the purification of the scrapie agent, in: Slow Transmissible Diseases of the Nervous System ( S. B. Prusiner and W. J. Hadlow, eds.), Academic, New York, pp. 465–478.Google Scholar
  153. Rohwer, R. G., Brown, P. W., and Gajdusek, D. C., 1979, The case of sedimentation to equilibrium as a step in the purification of the scrapie agent, in: Slow Transmissible Diseases of the Nervous System ( S. B. Prusiner and W. J. Hadlow, eds.), Academic, New York, pp. 465–478.Google Scholar
  154. Sanger, H. L., 1982, Biology, structure, functions, and possible origins of plant viroids, in: Nucleic Acids and Proteins in Plants, Vol. II. Encyclopaedia of Plant Pathology, New Series, 14B, Springer-Verlag, Berlin, pp. 368–454.Google Scholar
  155. Schmechel, D. E., Goldgaber, D., Burkhart, D. S., Gilbert, J. R., Gajdusek, D. C., and Roses, A. D., 1988, Cellular localization of amyloid-beta-protein messenger RNA in postmortem brain in Alzheimer’s disease patients, Int. J. Alzheimer’s Dis. Rel. Dis. 2: 96–111.Google Scholar
  156. Schubert, D., Schroeder, R., LaCorbiere, M., Saiton, T., and Cole, G., 1988, Amyloid 0-protein precursor is possibly a heparin sulfater proteoglycan core protein, Science 241: 223–226.PubMedCrossRefGoogle Scholar
  157. Selkoe, D. J., Abraham, C. R., Podlinsky, M. D., and Duffy, L. K., 1986, Isolation of low molecular weight proteins from amyloid plaque fibers in Alzheimer’s disease, J. Neurochem. 146: 1820–1834.Google Scholar
  158. Sotelo, J., Gibbs, C. J., Jr., and Gajdusek, D. C., 1980a, Autoantibodies against axonal neurofilaments in patients with kuru and Creutzfeldt-Jakob disease, Science 210: 190–193.PubMedCrossRefGoogle Scholar
  159. Sotelo, J., Gibbs, C. J., Jr., Gajdusek, D. C., Toh, B. H., and Wurth, M., 1980b, Method for preparing cultures of central neurons: Cytochemical and immunochemical studies, Proc. Natl. Acad. Sci. USA 77: 653–657.PubMedCrossRefGoogle Scholar
  160. Stefansson, K., Marton, L. S., Dieperink, M. E., Molnar, G. K., Schlaepfer, W. W., and Helgason, C. M., 1985, Circulating autoantibodies to the 200,000-dalton protein of neurofilaments in the serum of healthy individuals, Science 228: 1117–1119.PubMedCrossRefGoogle Scholar
  161. Sternberger, N. H., Sternberger, L. A., and Ulrich, J., 1985, Aberrant neurofilament phosphorylation in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 82: 4274–4276.PubMedCrossRefGoogle Scholar
  162. Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruas, G. A. P., St. George-Hyslop, P., VanKeuren, M. L., Patterson, D., Pagan, S., Kuruit, D. M., and Neve, R. L., 1987, Amyloid (β-protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235: 880–884.PubMedCrossRefGoogle Scholar
  163. Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., and Neve, R. L., 1988, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature (Lond.) 331: 528–530.CrossRefGoogle Scholar
  164. Taylor, D. M., and McConnell, I., 1988, Autoclaving does not decontaminate formal-fixed scrapie tissues, Lancet 1: 1463–1464.PubMedCrossRefGoogle Scholar
  165. Terry, R. D., and Pena, C. J., 1965, Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis, Neuropathol. Exp. Neurol. 24: 200–210.CrossRefGoogle Scholar
  166. Toh, B. H., Gibbs, C. J., Jr., Gajdusek, D. C., Goudsmit, J., and Dahl, D., 1985a, The 200- and 150-kDa neurofilament proteins react with IgG autoantibodies from patients with kuru, Creutzfeldt-Jakob disease and other neurologic diseases, Proc. Natl. Acad. Sci. USA 82: 3485–3489.PubMedCrossRefGoogle Scholar
  167. Toh, B. H., Gibbs, C. J., Jr., Gajdusek, D. C., Tuthill, D. D., and Dahl, D., 1985b, The 200- and 150- kDA neurofilament proteins react with IgG autoantibodies from chimpanzees with kuru, Creutzfeldt-Jakob disease and 62-kDa neurofilament-associated protein reacts with sera from sheep with natural scrapie, Proc. Natl. Acad. Sci. USA 82: 3894–3896.PubMedCrossRefGoogle Scholar
  168. Traub, R., Gajdusek, D. C., and Gibbs, C. J., Jr., 1977, Transmissible virus dementias. The relation of transmissible spongiform encephalopathy to Creutzfeldt—Jakob disease, in: Aging and Dementia ( M. Kinsbourne and L. Smith, eds.), pp. 91–146, Spectrum, Flushing, New York.Google Scholar
  169. Troncoso, J. C., Hoffman, P. N., Griffin, J. W., Hess-Kozlow, K. M., and Price, D. L., 1985, Aluminum intoxication: A disorder of neurofilament transport in motor neurons, Brain Res. 342: 172–175.PubMedCrossRefGoogle Scholar
  170. Van Nostrand, W. E., Wagner, S. L., Suzuki, M., Choi, B. H., Farrow, J. S., Geddes, J. W., Cotman, C. W., Cunningham, D. D., 1989, Protease nexin-11, a potent antichymotrypsin, shows identity to amyloid (β-protein precurser, Nature 341: 546–549.PubMedCrossRefGoogle Scholar
  171. Vernon, M. L., Horta-Barbosa, L., Fuccillo, D. A., Sever, J. L., Barringer, J. R., and Burnbaum, G., 1970, Virus-like particles and nuclear protein type filaments in brain tissue from two patients with Creutzfeldt-Jakob disease, Lancet 1: 964–967.PubMedCrossRefGoogle Scholar
  172. Weiss, A., 1981, Replication and evolution of inorganic systems, Angew. Chem. Int. Ed. Engl. 20:850– 860.Google Scholar
  173. Westaway, D., Goodman, P. A., Mirenda, C. A., McKinley, P., Carlson, G. A., and Prusiner, S. B., 1987, Distinct prion proteins in short and long scrapie incubation period mice, Cell 51: 651–662.PubMedCrossRefGoogle Scholar
  174. Wilesmith, J. W., Wells, G. A. H., Cranwell, M. P., and Ryan, J. B. M., 1988, Bovine spongiform encephalopathy: Epidemiological studies, Vet. Record 123: 638–644.Google Scholar
  175. Williams, E. S., and Young, S., 1980, Chronic wasting disease of captive mule deer: A spongiform encephalopathy, J. Wildl. Dis. 16: 89–98.PubMedGoogle Scholar
  176. Williams, E. S., and Young, S., 1982, Spongiform encephalopathy of Rocky Mountain elk, J. Wildl. Dis. 18: 465–471.PubMedGoogle Scholar
  177. Williams, E. S., Young, S., and Marsh, R. F., 1982, Preliminary evidence of the transmissibility of chronic wasting disease of mule deer, in: Proceedings of the Wildlife Disease Associate Annual Conference, August 19, 1982, Madison, Wisconsin (abst. 22).Google Scholar
  178. Wong, C. W., Quaranta, V., and Glenner, G. G., 1985, Neuritic plaques and cerebral vascular amyloid in Alzheimer disease are antigenically related, Proc. Natl. Acad. Sci. USA 82: 8729–9732.PubMedCrossRefGoogle Scholar
  179. Wood, J. G., Mirra, S. S., and Binder, L. I., 1986, Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associates protein tau (t), Proc. Natl. Acad. Sci. USA 83: 4040–4043.PubMedCrossRefGoogle Scholar
  180. ZuRhein, G. M., and Varakis, J., 1976, Subacute spongiform encephalopathy, in: Slow Virus Diseases of Animal and Man ( R. H. Kimberlin, ed.), North-Holland, Amsterdam, pp. 359–380.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. Carleton Gajdusek
    • 1
  • C. Joseph GibbsJr.
    • 1
  1. 1.Laboratory of Central Nervous System StudiesNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA

Personalised recommendations