Skip to main content

Contaminant Transport in the Subsurface: Sorption Equilibrium and the Role of Nonaqueous Phase Liquids

  • Chapter

Abstract

In this discussion the sources of nonequilibrium during contaminant transport are reviewed and the effects of contaminant solubility and geologic material organic carbon content on sorption equilibrium are reported. For experimental work with three neutral organic compounds (NOC’s) and geologic material from the saturated zone (TOC = 0.33 g kg−1), unsaturated zone (TOC = 2.6 g kg−1), and surface soil (TOC = 6.9 g kg−1), sorption nonequilibrium during solute transport through columns was detectable for contaminant-geologic material combinations yielding retardation factors >2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Banerjee, P., M.D. Piwoni, and K. Ebeid. 1985. Sorption pf organic contaminants to a low carbon subsurface core. Chemosphere. 14:1057–1067.

    Article  CAS  Google Scholar 

  2. Bouchard, D.C, and A.L. Wood. 1988. Pesticide sorption on geologic material of varying organic carbon content. Toxic. Indust. Health. 4:341–349.

    CAS  Google Scholar 

  3. Schwarzenbach, R.P., and J. Westall. 1981. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ. Sei. Technol. 15:1360–1367.

    Article  CAS  Google Scholar 

  4. Bouchard, D.C, A.L. Wood, M.L. Campbell, P. Nkedi-Kizza, and P.S.C. Rao. 1988. Sorption nonequilibrium during solute transport. J. Contam. Hydrol. 2:209–223.

    Article  CAS  Google Scholar 

  5. Bouchard, D.C, CG. Enfield, and M.D. Piwoni. 1989. Transport processes involving organic chemicals. In Reactions and movement of organic chemicals in soils. Soil Sci. Soc. Am. Spec. Pub, Amer. Soc. Agron., Madison, WI.

    Google Scholar 

  6. Lapidus, L., and N.R. Amundson. 1952. Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J. Phys. Chem. 56:984–988.

    CAS  Google Scholar 

  7. Hashimoto, I., K.B. Deshpande, and H.C Thomas. 1964. Peclet numbers and retardation factors for ion exchange columns. Ind. Eng. Chem. Fund. 3:213–218.

    Article  CAS  Google Scholar 

  8. Kay, B.D., and D.E. Elrick. 1967. Adsorption and movement of lindane in soils. Soil Sci. 104:314–322.

    Article  CAS  Google Scholar 

  9. Nielsen, D.R., and J.W. Biggar. 1961. Miscible displacement in soils: Experimental information. Soil Sci. Soc. Am. Proc. 25:1–5.

    Article  Google Scholar 

  10. Selim, H.M., J.M. Davidson, and R.S. Mansell. 1976. Evaluation of a two-site adsorption-desorption model for describing solute transport in soil. Proc Summer Computer Simulation Conf., 12–14 July 1976. Washington, D.C, pp. 444–448.

    Google Scholar 

  11. Cameron, D.R., and A. Klute. 1977. Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resour. Res. 13:183–188.

    Article  CAS  Google Scholar 

  12. van Genuchten, M. Th. 1981. Non-equilibrium solute transport parameters from miscible displacement experiments. Res. Rep. 119, U.S. Salinity Laboratory and Dept. of Soil and Environ. Sciences, Univ. of California, Riverside.

    Google Scholar 

  13. Nkedi-Kizza, P., J.W. Biggar, H.M. Selim, M. Th. van Genuchten, P.J. Wierenga, J.M. Davidson, and D.R. Nielson. 1984. On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated Oxisol. Water Resour. Res. 20:1123–1130.

    Article  CAS  Google Scholar 

  14. Karickhoff, S.W., and K.R. Morris. 1985. Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Tox. Chem. 4:469–479.

    Article  CAS  Google Scholar 

  15. Wu, Shian-chee, and P.M. Gschwend. 1986. Sorption kinetics of hydrophobic compounds to natural sediments and soils. Environ. Sci. Technol., 20:717–725.

    Article  CAS  Google Scholar 

  16. Rao, P.S.C., A.G. Hornsby, D.P. Kilcrease, and P. Nkedi-Kizza. 1985. Sorption and transport of hydrophobic organic chemicals in aqueous and mixed solvent systems: Model development and preliminary evaluation. J. Environ. Qual. 14:376–383.

    Article  CAS  Google Scholar 

  17. Enfield, CG., and G. Bengtsson. 1988. Macromolecular transport of hydrophobic contaminants in aqueous environments. Ground Water 26:64–70.

    Article  CAS  Google Scholar 

  18. Bear, J. 1979. Hydraulics of Groundwater. McGraw-Hill Inc., N. Y., N.Y.

    Google Scholar 

  19. Schwille, F. 1981. Groundwater pollution in porous media by fluids immiscible with water. In: Quality of Groundwater, Proceedings of an International Symposium. Elsevier Pub., Amsterdam, the Netherlands.

    Google Scholar 

  20. Collins, R.E. 1961. Flow of fluids through porous materials. Penwell Pub. Co., Tulsa, OK.

    Google Scholar 

  21. Chatzis, I., M.S.Kuntamukkula, and N.R. Morrow. 1984. Blob-size distribution as a function of capillary number in sandstones. Paper 13213, presented at SPE Annual Tech. Conf. and Exhib., Houston, Texas.

    Google Scholar 

  22. Chatzis, I., N.R. Morrow, and H.T. Lim. 1983. Magnitude and detailed structure of residual oil saturation. Soc. Petrol. Engin. J. 23:311–326.

    Google Scholar 

  23. Felsenthal, M. 1979. A statistical study of core waterflood parameters. J. Petrol. Tech. 31:1303–1304.

    Google Scholar 

  24. Conrad, S.H., E.F. Hagan, and J.L. Wilson. 1987. Why are residual saturations of organic liquids different above and below the water table? Proc. Petrol. Hydrocarbons Org. Chem. in Ground Water, NWWA.

    Google Scholar 

  25. Wilson, J.L., and S.H. Conrad. 1984. Is physical displacement of residual hydrocarbons a realistic possibility in aquifer restoration? Proc. Petrol. Hydrocarbons Org. Chem. in Ground Water, NWWA, Houston, TX, p. 274–298.

    Google Scholar 

  26. Mohanty, K.K., H.T. Davis, and L.E. Scriven. 1980. Physics of oil entrapment in water-wet rock. Paper 9406, presented at SPE Annual Tech. Conf. and Exhib., Dallas, TX.

    Google Scholar 

  27. Pathak, P., H.T. Davis, and L.E. Scriven. 1982. Dependence of residual nonwetting liquid on pore topology. Paper 11016, presented at SPE Annual Tech. Conf. and Exhib., New Orleans, LA.

    Google Scholar 

  28. Morrow, N.R., and B. Songkran. 1981. Effect of viscous and buoyancy forces on nonwetting phase trapping in porous media. In: Surface Phenomena in Enhanced Oil Recovery, D.O. Shah, ed., Plenum Press, N.Y., N.Y.

    Google Scholar 

  29. Chatzis, I., and N. Morrow. 1981. Correlation of capillary number relationships for sandstones. Paper 10114, presented at SPE Annual Tech. Conf. and Exhib., San Antonio, TX.

    Google Scholar 

  30. Melrose, J.C., and C.F. Brandner. 1974. Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding. J. Can. Petrol. Tech., 13:54–62.

    Google Scholar 

  31. Morrow, N.R. 1979. Interplay of capillary, viscous, and bouyancy forces in the mobilization of residual oil. J. Can. Petrol. Tech., 18:35–46.

    CAS  Google Scholar 

  32. Foster, V.R. 1973. A low tension waterflooding process employing a petroleum sulfonate, inorganic salts, and a biopolymer. J. Petrol. Tech., 25:205–210.

    CAS  Google Scholar 

  33. Groves, F.R. 1988. Effects of cosolvents on the solubility of hydrocarbons in water. Environ. Sci. Technol. 22:282–286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Bouchard, D.C. (1989). Contaminant Transport in the Subsurface: Sorption Equilibrium and the Role of Nonaqueous Phase Liquids. In: Allen, D.T., Cohen, Y., Kaplan, I.R. (eds) Intermedia Pollutant Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0511-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0511-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7843-6

  • Online ISBN: 978-1-4613-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics