Skip to main content

Solute Transport in Heterogeneous Field Soils

  • Chapter
Intermedia Pollutant Transport

Abstract

The purpose of this paper is to briefly review current approaches to quantifying (modeling) solute transport in the unsaturated (vadose) zone of field soils. Much progress has been attained in the analytical and numerical description of vadose zone transfer processes. A variety of mathematical models are now available to describe and predict water flow and solute transport between the land surface and the groundwater table. The most popular models remain the classical Richards’ equations for unsaturated flow and the Fickian-based convection-dispersion equation for solute transport. While deterministic solutions of these equations remain useful tools in both fundamental and applied research, their practical utility for predicting actual field-scale water and solute distributions is increasingly being questioned. Problems caused by preferential flow through soil macro-pores, spatial and temporal variability in the soil hydraulic properties, various nonequilibrium processes affecting chemical transport, and a lack of progress in improving our field measurement technology, have contributed to some disillusionment with the classical models. A number of alternative deterministic and stochastic approaches have been proposed to better deal with field-scale heterogeneities. These models have greatly increased our quantitative understanding of field-scale flow and transport processes, and in some cases also resulted in better practical tools for management purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriola, L. M. and G. F. Pinder, 1985, A multi-phase approach to the modeling of porous media contamination by organic compounds, 1, Equation development, Water Resour. Res., 21:11–18.

    CAS  Google Scholar 

  • Addiscott, T.M., and R. J. Wagenet, 1985, Concepts of solute leaching in soils: A review of modeling approaches, J. Soil Sci., 36:411–424.

    Article  CAS  Google Scholar 

  • Amoozegard-Fard, A., D. R. Nielsen, and A. W. Warrick, 1982, Soil solute concentration distributions for spatially varying pore water velocities and apparent diffusion coefficients, Soil Sci. Soc. Am. J., 46:3–9.

    Google Scholar 

  • Anderson, J., and A. M. Shapiro, 1983, Stochastic analysis of one-dimensional and steady-state unsaturated flow: A comparison of Monte Carlo and perturbation methods, Water Resour. Res., 19:121–133.

    Google Scholar 

  • Beven, K., and P. Germann, 1982, Macropores and water flow in soils, Water Resour. Res., 18:1311–1325.

    Google Scholar 

  • Bresler, E., and G. Dagan, 1983, Unsaturated flow in spatially variable fields, 3, Solute transport models and their application to two fields, Water Resour. Res., 19:429–435.

    Google Scholar 

  • Carnahan, C. L., and J. S. Remer, 1984, Nonequilibrium and equilibrium sorption with linear sorption isotherm during mass transport through an infinite porous medium: Some analytical solutions, J. Hydrol., 73:227–258.

    Article  CAS  Google Scholar 

  • Cederberg, G. A., R. L. Street, and J. 0. Leckie, 1985, A groundwater mass transport and equilibrium chemistry model for multi-component systems, Water Resour. Res., 21:1095–1104.

    CAS  Google Scholar 

  • Charbeneau, R. J., 1988, Multicomponent exchange and subsurface solute transport: Characteristics, coherence and the Riemann problem, Water Resour. Res., 24:57–64.

    CAS  Google Scholar 

  • Dagan, G., 1984, Solute transport in heterogeneous porous formations, J. Fluid Mech., 145:151–177.

    Article  Google Scholar 

  • Dagan, G., and E. Bresler, 1983, Unsaturated flow in spatially variable fields, 1, Derivation of models of infiltration and redistribution, Water Resour. Res., 19:413–420.

    Google Scholar 

  • Dalton, F. N., W. N. Herkelrath, D.S. Rawlins, and J.D. Rhoades, 1984, Time-domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe, Science, 224:989–990.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, M. R., 1985, Numerical calculation of saturated-unsaturated infiltration in a cracked soil, Water Resour. Res., 21:709–714.

    Google Scholar 

  • DeSmedt, F., and P. J. Wierenga, 1984, Solute transfer through columns of glass beads, Water Resour. Res., 20:225–232.

    CAS  Google Scholar 

  • Dyson, J. S., and R. E. White, 1987, A comparison of the convection-dispersion equation and transfer function model for predicting chloride leaching through an undisturbed, structured clay soil, J. Soil Sci., 38:157–172.

    Article  CAS  Google Scholar 

  • Gelhar, L. W., and C. L. Axness, 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19:161–180.

    Google Scholar 

  • Gelhar, L. W., A. L. Gutjahr, and R. N. Naff, 1979, Stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 15:1387–1397.

    Google Scholar 

  • Germann, P. F., and K. Beven, 1985, Kinematic wave approximation to infiltration into soils with sorbing macropores, Water Resour. Res., 21:990–996.

    Google Scholar 

  • Gillham, R. W., E. A. Sudicky, J. A. Cherry, and E. 0. Frind, 1984, An advection-diffusion concept for transport in heterogeneous unconsolidated geologic deposits, Water Resour. Res., 20:369–378.

    Google Scholar 

  • Goltz, M. N., and P. V. Roberts, 1986a, Three-dimensional solutions for solute transport in an infinite medium with mobile and immobile zones, Water Resour. Res., 22:1139–1148.

    CAS  Google Scholar 

  • Goltz, M. N., and P. V. Roberts, 1986b, Interpreting organic solute transport data from a field experiment using physical nonequilibrium models, J. Contam. Hydrol., 1:77–93.

    Article  CAS  Google Scholar 

  • Hewett, T. A., 1986, Fractal distributions of reservoir heterogeneity and their influence on fluid transport, Paper SPE 5386, 61st Annual Technical Conf., Soc. Pet. Eng., New Orleans, Louisiana, Oct. 5–8, 1986.

    Google Scholar 

  • Huyakorn, P. S., B. H. Lester, and J. W. Mercer, 1983, An efficient finite element technique for modeling transport in fractured porous media, 1, Single species transport, Water Resour. Res., 19:841–854.

    Google Scholar 

  • Jury, W. A., 1982, Simulation of solute transport using a transfer function model, Water Resour. Res., 18:363–368.

    CAS  Google Scholar 

  • Jury, W. A., 1984, Field scale water and solute transport through unsaturated soils, in: “Soil Salinity Under Irrigation”, I. Shainberg and J. Shalhevet, eds., pp. 115–129, Springer-Verlag, New York.

    Google Scholar 

  • Jury, W. A., W. F. Spencer, and W. J. Farmer, 1983, Behavior assessment model for trace organics in soil, I, Model description, J. Environ. Qual., 12:558–564.

    Article  CAS  Google Scholar 

  • Jury, W. A., G. Sposito, and R. E. White, 1986, A transfer function model of solute transport through soil, l, Fundamental concepts, Water Resour. Res, 22:243–247.

    Google Scholar 

  • Jury, W. A., D. Russo, and G. Sposito, 1987, Spatial variability of water and solute transport in unsaturated soil, II, Scaling models of water transport, Hilgardia, 55:33–55.

    Google Scholar 

  • Knighton, R. E., and R. J. Wagenet, 1987, Simulation of solute transport using a continuous time Markov process, l, Theory and steady state application, Water Resour. Res., 23:1911–1916.

    CAS  Google Scholar 

  • Kirkner, D. J., Theis, T. L., and A. A. Jennings, 1984, Multicomponent solute transport with sorption and soluble coraplexation, Adv. Water Resour., 7:120–125.

    Article  Google Scholar 

  • Kool, J.B., and J. C. Parker, 1988, Analysis of the inverse problem for transient unsaturated flow, Water Resour. Res., 24:817–830.

    CAS  Google Scholar 

  • Kool, J. B., J. C. Parker, and M. Th. van Genuchten, 1987, Parameter estimation for unsaturated flow and transport models, J. Hydrol., 91:255–293.

    Article  CAS  Google Scholar 

  • MacKay, D. M., P. V. Roberts, and J. A. Cherry, 1985, Transport of organic contaminants in groundwater, Environ. Sci. Techn., 19:384–392.

    Article  CAS  Google Scholar 

  • Maloszewski, P., and A. Zuber. 1985, On the theory of tracer experiments in fissured rocks with a porous matrix, J. Hydrol., 79:333–358.

    Article  CAS  Google Scholar 

  • Miller, C. W., and L. V. Benson, 1983, Simulation of solute transport in a chemically reactive heterogeneous system: Model development and application, Water Resour. Res., 19:381–391.

    CAS  Google Scholar 

  • Miller, E. E. 1980. Similitude and scaling of soil-water phenomena, in: “Applications of Soil Physics”, D. Hillel, ed., pp. 300–318, Academic Press, New York.

    Google Scholar 

  • Miller, E. E., and R. D. Miller, 1956, Physical theory of capillary flow phenomena, J. Appl. Phys., 27:324–332.

    Article  CAS  Google Scholar 

  • Nielsen, D. R., P. M. Tillotson, and S. R. Veira, 1983, Analyzing field-measured soil-water properties, Agric. Water Manage., 6:93–109.

    Article  Google Scholar 

  • Nielsen, D. R., M. Th. van Genuchten, and J. W. Biggar, 1986, Water flow and solute transport processes in the unsaturated zone, Water Resour. Res., 22:89S–108S.

    Google Scholar 

  • Nkedi-Kizza, P., J. W. Biggar, H. M. Selim, M. Th. van Genuchten, P. J. Wierenga, J. M. Davidson, and D. R. Nielsen, 1984, On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated Oxisol, Water Resour. Res., 20:1123–1130.

    CAS  Google Scholar 

  • Paetzold, R. F., G. A. Matzkanin, and A. De Los Santos, 1985, Surface soil water content measurement using pulsed nuclear magnetic resonance techniques, Soil Sci. Soc. Am. J., 49:537–540.

    Google Scholar 

  • Parker, J. C., and P. M. Jardine, 1986, Effects of heterogeneous adsorption behavior on ion transport, Water Resour. Res., 22:1334–1340.

    Google Scholar 

  • Parker, J. C., and A. J. Valocchi, 1986, Constraints on the validity of equilibrium and first-order kinetic transport models in structured soils, Water Resour. Res., 22:399–407.

    CAS  Google Scholar 

  • Parker, J. C., and M. Th. van Genuchten, 1984, Determining transport parameters from laboratory and field tracer experiments, Bull. 84–3, Virginia Agric. Exp. Sta., Blacksburg, Virginia.

    Google Scholar 

  • Peck, A. J., 1983, Field variability of soil physical properties, Adv. Irrigation, 2:189–221.

    Google Scholar 

  • Persaud, N., J. V. Giraldez, and A. C. Chang. 1985, Monte-Carlo simulation of non-interacting solute transport in a spatially heterogeneous soil, Soil Sci. Soc. Am. J., 49:562–568.

    Google Scholar 

  • Pinder, G. F., and L. M. Abriola, 1986, On the simulation of nonaqueous phase organic compounds in the subsurface, Water Resour. Res., 22.109S–119S.

    Google Scholar 

  • Rao, P. S. C., J. M. Davidson, and H. M. Selim, 1979, Evaluation of conceptual models for describing nonequilibrium adsorption-desorption of pesticides during steady flow in soils, Soil Sci. Soc. Am. J., 43:22–28.

    CAS  Google Scholar 

  • Rasmuson, A., 1984, Migration of radionuclides in fissured rock: Analytical solutions for the case of constant source strength, Water Resour. Res., 20:1435–1442.

    CAS  Google Scholar 

  • Rubin, J., and R. V. James, 1973, Dispersion-affected transport of reacting solutes in saturated porous media: Galerkin method applied to equilibrium-controlled exchange in unidirectional steady water flow, Water Resour. Res., 9:1332–1356.

    Google Scholar 

  • Schulin, R., M. Th. van Genuchten, H. Fluhler, and P. Ferlin, 1987, An experimental study of solute transport in a stony field soil, Water Resour. Res., 23:1785–1794.

    CAS  Google Scholar 

  • Selim, H. M., J. M. Davidson, and R.S. Mansell, 1976, Evaluation of a two-site adsorption- desorption model for describing solute transport in soils, Proceedings 1976 Summer Computer Simulation Conference, pp. 444–448, July 12–14, 1976, Washington, D.C.

    Google Scholar 

  • Seyfried, M. S., and P. S. C. Rao, 1987, Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects, Soil Sci. Soc. Am. J., 51:1434–1444.

    Google Scholar 

  • Simmons, C. S., 1982, A stochastic-convective ensemble method for representing dispersive transport in groundwater, Report CS-2258, Electric Power Research Institute, Palo Alto, California.

    Google Scholar 

  • Sposito, G., and W. A. Jury, 1985, Inspectional analysis in the theory of water flow through soil, Soil Sci. Soc. Am. J., 49:791–797.

    Google Scholar 

  • Sposito, G., W. A. Jury, and V. K. Gupta, 1986a, Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils, Water Resour. Res., 22:77–88.

    CAS  Google Scholar 

  • Sposito, G., R. E. White, P. R. Darrah, and W. A. Jury, 1986b, A transfer function model of solute transport through soil, 3, The convection-dispersion equation, Water Resour. Res., 22:255–262.

    Google Scholar 

  • Tillotson, P. M., and D. R. Nielsen, 1984, Scale factors in soil science, Soil Sci. Soc. Am. J., 48:953–959.

    Google Scholar 

  • Topp, G. C., M. Yanuka, W.D. Zebchuk, and S. Zegelin, 1988, Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines, Water Resour. Res., 24:945–952.

    Google Scholar 

  • Valocchi, A. J., 1984, Describing the transport of ion-exchanging contaminants using an effective Kd approach, Water Resour. Res., 20:499–503.

    CAS  Google Scholar 

  • Valocchi, A. J., 1985, Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils, Water Resour. Res., 21:808–820.

    CAS  Google Scholar 

  • van Eijkeren, J. C. M., and J. P. G. Loch, 1984, Transport of cationic solutes in sorbing porous media, Water Resour. Res., 20:714–718.

    Google Scholar 

  • van Genuchten, M. Th., 1981. Non-equilibrium transport parameters from miscible displacement experiments, Res. Report No. 119, U.S. Salinity Lab., Riverside, California.

    Google Scholar 

  • van Genuchten, M. Th., 1985, A general approach for modeling solute transport in structured soils, Memoires Int. Assoc. Hydrogeol., 17: 513–526.

    Google Scholar 

  • van Genuchten, M. Th., and F. N. Dalton, 1986, Models for simulating salt movement in aggregated field soils, Geoderma, 38:165–183.

    Article  Google Scholar 

  • Wagenet, RJ. Principles of salt movement in soil, 1983, in: “Chemical Mobility and Reactivity in Soil Systems”, DW Nelson et al., eds., pp. 123–140, Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Wagenet, R. J., and P. S. C. Rao. 1985, Basic concepts of modeling pesticide fate in the crop root zone, Weed Sci., 33(Suppl. 2):25–32.

    CAS  Google Scholar 

  • Wagner, B. J., and S. M. Gorelick, 1986, A statistical method for estimating transport parameters: Theory and applications to one-dimensional advec-tive-dispersive systems, Water Resour. Res., 22:1303–1315.

    Google Scholar 

  • Wang, J. S. Y., and T. N. Narasimhan, 1985, Hydrologie mechanisms governing fluid flow in a partially saturated, fractured, porous medium, Water Resour. Res., 21:1861–1874.

    Google Scholar 

  • Wheatcraft, S. W., and S. W. Tyler, 1988, An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry, Water Resour. Res., 24:566–578.

    CAS  Google Scholar 

  • White, R. E., 1985, The influence of macropores on the transport of dissolved matter through soil, Adv. Soil Sci., 3:95–120.

    Google Scholar 

  • White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito, 1986, A transfer function model of solute transport through soil, 2, illustrative examples, Water Resour. Res., 22:248–254.

    CAS  Google Scholar 

  • Yeh, GT, and RJ Luxmoore, 1982, Chemical transport in macropore-mesopore media under partially saturated conditions, in: “Symposium on Unsaturated Flow and Transport Modeling”, EM Arnold, GW, Gee and RW Nelson, eds., pp. 267–281, NUREG/CP- 0030, U. S. Nuclear Regulatory Commission Washington, DC.

    Google Scholar 

  • Yeh, T.-C J., L. W. Gelhar and A. L. Gutjahr, 1985a, Stochastic analysis of unsaturated flow in heterogeneous soils, 1, Statistically isotropic media, Water Resour. Res., 21:447–456.

    Google Scholar 

  • Yeh, T.-C. J., L. W. Gelhar and A. L. Gutjahr, 1985b, Stochastic analysis of unsaturated flow in heterogeneous soils, 2, Statistically anisotropic media with variable a, Water Resour. Res., 21:457–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

van Genuchten, M.T., Shouse, P.J. (1989). Solute Transport in Heterogeneous Field Soils. In: Allen, D.T., Cohen, Y., Kaplan, I.R. (eds) Intermedia Pollutant Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0511-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0511-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7843-6

  • Online ISBN: 978-1-4613-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics