Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 199))

Abstract

Propagation of an ion in a solid involves the penetration of a rather large species through a structure, which, from the point of view of the ion, is densely populated. One would, therefore, expect small ion (cation) motion to be more likely than large ion (anion) motion. While this is indeed the trend, fast anionic conduction in crystalline solids can be observed at elevated temperatures where conductivities of the order of 1 ohm- 1 -cm- 1 are measured.

The most intensively investigated anionic conductors are those conducting oxygen and fluorine ions. However, conduction of other anions, in particular halogen ions, has been observed.

We discuss the following topics: The various conduction mechanisms, crystalline structures and defect structures that enable the conduction of anions. Special emphasis will be on the fluorite structure. Typical examples of fast O2 — and Fconductors will be discussed in detail.

Data collected from a range of different experimental methods for the same material or group of materials will be presented. This will constitute the main part of the lecture.

We shall close the presentation with short references to a) application of fast anion conductors, and b) “high temperature” superconductor oxides, the crystalline and defect structure of which are rather close to some of the oxide fast ionic conductors that will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.R.C. Handbook of Chemistry and Physics, 62nd ed. (1981–82) p. F-175.

    Google Scholar 

  2. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, “Introduction to Ceramics,” 2nd ed., pp. 56–61, John Wiley & Sons (1976).

    Google Scholar 

  3. L. Börjesson and L.M. Torell, “Raman Scattering Evidence of Rotating S042- in Solid Sulfate Electrolytes,” Solid State Ionics 18&19: 582–6 (1985).

    Google Scholar 

  4. K. Funke and I. Riess, “Debye-Hückel-Type Relaxation Processes in Solid Ionic Conductors,” Z. Phys. Chemie NF 140, 217–32 (1984)

    Article  Google Scholar 

  5. K. Funke, “Debye-Hückel-Type Relaxation Processes in Solid Ionic Conductors: The Model,” Solid State Ionics 18&19: 183–90 (1986).

    Article  Google Scholar 

  6. L. Slifkin, “Subsurface Effects in Ionic Crystals,” Material Science Forum 1: 75–84 (1984).

    Article  Google Scholar 

  7. J. Maier, “On the Heterogeneous Doping of Ionic Conductors,” Solid State Ionics 18&19: 1141–45 (1980).

    Google Scholar 

  8. J. Maier, “Space Charge Regions in Solid Two Phase Systems and Their Conduction Contribution-II, Contact Equilibrium at the Interface of Two Ionic Conductors and the Related Conductivity Effect,” Ber. Bunsenges. Phys. Chem. 89: 355–62 (1985).

    Google Scholar 

  9. I. Riess, D. Braunshtein, and D.S. Tannhauser, “Density and Ionic Conductivity of Sintered (CeO2)0 82(Gd01. 5)0. 18, ” J. Am. Ceram. Soc. 64: 479–85 (1981).

    Article  Google Scholar 

  10. W. Schröter and H. Nölting, “Specific Heat of Crystals with the Fluorite Structure,” J. de Physique 41: C620–3 (1980).

    Google Scholar 

  11. R.W.G. Wyckoff, “Crystal Structures,” 2nd ed., Vol. 2, Interscience Pub. (1964) pp. 59, 61.

    Google Scholar 

  12. P. Shuk and H.H. Möbius, “tiberfuhrangszahlen and Electrische Leitfahigkeit von Modifikationen des Bi20” Z. Phys. Chemie, Leipzig 266, (1985) pp. 9–16.

    Google Scholar 

  13. M.J. Verkerk and A.J. Burggraaf, “High Oxygen Ion Conduction in Sintered Oxides of the Bit 03 -Ln2 03 System,” Solid State Ionics 3 /4 (1983) pp. 463–67.

    Article  Google Scholar 

  14. H. Rickert, “Electrochemistry of Solids, an Introduction,” Springer-Verlag (1982).

    Google Scholar 

  15. P. Hagenmuller and W. van Gool, eds., “Solid Electrolytes, General Principles, Characterization, Materials, Applications,” Academic Press (1978).

    Google Scholar 

  16. S. Geller, ed., “Solid Electrolytes,” Springer-Verlag (1977).

    Google Scholar 

  17. O. Toft Sorensen, ed., “Nonstocihiometric Oxides,” Academic Press (1981).

    Google Scholar 

  18. P. Hagenmuller, ed., “Inorganic Solid Fluorides: Chemistry and Physics,” Academic Press (1985).

    Google Scholar 

  19. R.G. Linford and S. Hackwood, “Physical Techniques for the Study of Solid Electrolytes,” Chem. Rev. 81: 327–64 (1981).

    Article  Google Scholar 

  20. H. Schmalzried, “Solid State Reactions,” Verlag Chemie and Academic Press (1974).

    Google Scholar 

  21. F.A. Kröger, “The Chemistry of Imperfect Crystals,” 2nd revised edition, Vol. I, II, III, North-Holland Pub. Co. (1974).

    Google Scholar 

  22. S. Fujitsu, K. Koumoto, and H. Yanagida, “Enhancement of Ionic Conudctivity of SrC12 by Al2O3 Dispersion,” Solid State Ionics 18&19: 1146–49 (1986).

    Article  Google Scholar 

  23. J. Corish, B.M.C. Parker, J.M. Quigley, A.R. Allnatt and D.C.A. Mulcahy, “Point-Defect Mobility in Thallous Chloride Doped with Divalent Cation and Anion Impurities,” J. Phys. C: Solid State Phys., 17: 2689–704 (1984).

    Article  ADS  Google Scholar 

  24. M. Lumbreras, J. Protas, S. Jebbari, G.J. Dirksen, and J. Schoonman, “Crystal Growth and Characterization of Mixed Lead Halides PbC12xBr2(1-x)” Solid State Ionics 16: 195–200 (1985).

    Article  Google Scholar 

  25. M. Lumbreras, J. Protas, S. Jebbari, G.J. Dirksen, and J. Schoonman, “Crystal Growth and Characterization of Mixed Lead Halides PbC12.Br2,1-x,. I.” Solid State Ionics, 18&19: 1179–83 (1986).

    Article  Google Scholar 

  26. V.K. Yanovskii, V.I. Voronkova, Yu.F. Roginskaya, and Yu.N. Venevtsev, “Rapid Anion Transfer in Bi2W06 Crystals,” Sov. Phys. Solid State 24: 1603–4 (1982).

    Google Scholar 

  27. J. Nölting, “Scanning Calorimetry with Adiabatic or Controlled Diabatic Surroundings,” Thermochimica Acta 94: 1–15 (1985).

    Article  Google Scholar 

  28. M. Ouwerkerk, E. Kelder, and J. Schoonman, “Conductivity and Specific Heat of Fluorites M1UXF2,2a (M = Ca, Sr, Ba, and Pb)” Solid State Ionics 9&10: 531–36 (1983).

    Article  Google Scholar 

  29. M. Ouwerkerk and J. Schoonman, “The Critical Temperature in Fluorite-Type Solid Solutions,” Solid State Ionics 12: 479–84 (1984).

    Article  Google Scholar 

  30. K. Koto, H. Schulz, and R.A. Huggins, “Anion Disorder and Ionic Motion in Lead Fluorite (A-PbF2),” Solid State Ionics 1 (1980) pp. 355–65.

    Article  Google Scholar 

  31. M.H. Dickens, W. Hayes, C. Smith, and M.T. Hutchings, “Anion Disorder in Two Fluorites at High Temperatures Determined by Neutron Diffraction,” in “Fast Ion Transport in Solids,” Vashista, Munday, Shenoy eds. Elsevier (1979) pp. 225–28.

    Google Scholar 

  32. Y. Ito, K. Koto, S. Yoshikado and T. Ohachi, “The Contribution of Anion Disorder to Ionic Conudctivity on Single Crystals of 13-PbF2,” Solid State Ionics 15: 253–58 (1985).

    Article  Google Scholar 

  33. J.A. Kilner and C.D. Waters, “The Effects of Dopant Cation-Oxygen Vacancy Complexes on the Anion Transport Properties of Nonstoichiometric Fluorite Oxides,” Solid State Ionics 6 (1982) pp. 253–59.

    Article  Google Scholar 

  34. K. Fuda, K. Koshio,. S. Yamauchi, K. Fueki, and Y. Onoda, “170 NMR Study of Y2 O, Doped CeO2, ” J. Phys. Chem. Solids 45: 1253–57 (1984).

    Article  ADS  Google Scholar 

  35. D.Y. Wang, D.S. Park, J. Griffith, and A.S. Nowick, “Oxygen-Ion Conductivity and Defect Interactions in Yttria-Doped Ceria,” Solid State Ionics 2: 95–105 (1981).

    Article  Google Scholar 

  36. P. Sarkar and P.S. Nicholson, “ac Conductivity and Conductivity Relaxation Studies in the Ce02-Y2O, System,” Solid State Ionics, 21: 49–53 (1986).

    Article  Google Scholar 

  37. A.S. Nowick and B.S. Berry, “Anelastic Relaxation in Crystalline Solids,” Academic Press (1972).

    Google Scholar 

  38. M.P. Anderson and A.S. Nowick, “Relaxation Peaks Produced by Defect Complexes in Cerium Dioxide Doped with Trivalent Cations,” J. de Physique 42:C5–823–28 (1981).

    Google Scholar 

  39. R. Gerhardt-Anderson, F. Zamani-Noor and A.S. Nowick, “Study of Sc20,-Doped Ceria by Anelastic Relaxation,” Solid State Ionics 9&10: 931–36 (1983).

    Article  Google Scholar 

  40. M.P. Anderson, D.E. Cox, K. Halperin, and A.S. Nowick, “Neutron Diffuse Scattering in Y,0,-and Sc2 0, -Doped CeO2f” Solid State Ionics 9&10: 953–60 (1983).

    Article  Google Scholar 

  41. A. Overs and I. Riess, “Properties of the Solid Electrolyte Gadolinia-Doped Ceria Prepared by Thermal Decomposition of Mixed Cerium-Gadolinium Oxalate,” J. Am. Ceram. Soc. 65: 606–09 (1982).

    Article  Google Scholar 

  42. W. Tinglian, L. Xiaofei, K. Chukun, and W. Weppner, “Conductivity of MgO-Doped ZrO2f” Solid State Ionics 18&19: 715–19 (1986).

    Google Scholar 

  43. J. Shinar, D.S. Tannhauser, and B.L. Silver, “ESR Study of Color Centers in Yttria Stabilized Zirconia,” Solid State Ionics 18&19, 912–15 (1986).

    Google Scholar 

  44. J. Dexpert-Ghys, M. Faucher, and P. Caro, “Site Selective Spectroscopy and Structural Analysis of Yttria-Doped Zirconia,” J. Solid State Chem. 54: 179–92 (1984).

    Article  ADS  Google Scholar 

  45. J.M. Reau, A. Phandour, S.F. Matar, and P. Hagenmuller, “Optimisation des Facteurs Influencant la Conductivite Anionique dans quelques Fluorunes de Structure Fluorine,” J. Solid State Chem. 55: 7–13 (1984).

    Article  ADS  Google Scholar 

  46. M. Ouwerkerk, N.H. Andersen, E.F. Veldkamp, and J. Schoonman, “Neutron Diffraction and TSDC on Bal_sU,F2,2a Solid Electrolytes,” Solid State Ionics 18&19: 916–21 (1986).

    Article  Google Scholar 

  47. A.S. Nowick, “The Combining of Dielectric and Anelastic Relaxation Measurements in the Study of Point Defects in Insulating Crystals,” J. de Physique 46:C1O 507–11 (1985).

    Google Scholar 

  48. K.E.D. Wapenaar, H.G. Koekkoek and J. van Turnhout, “Low Temperature Ionic Conductivity and Dielectric Relaxation Phenomena in Fluorite-Type Solid Solutions,” Solid State Ionics 7: 225–42 (1982).

    Article  Google Scholar 

  49. J. Meuldijk, R. van der Meulen, and H.W. den Hartog, “Dielectric-Relaxation Experiments on Cubic Solid Solutions of SrF, and CeF, or PrF,,” Phys. Rev. B29: 2153–59 (1984).

    ADS  Google Scholar 

  50. J. Meuldijk, G. Kiers, and H.W. den Hartog, “Effect of Clustering on the Space-Charge Relaxation Phenomena in Fluorite Type Solid Solutions Sr,xDy.F2,s and Sr1_sErsF2,s,” Phys. Rev. B28:6O22–30 (1983).

    ADS  Google Scholar 

  51. H.W. den Hartog and J. Meuldijk, “Dipoles in Solid Solutions Sr,_sGdsF2,s,” Phys. Rev. B29: 2210–15 (1984).

    ADS  Google Scholar 

  52. L.A. Muradyan, B.A. Maksimov, B.F. Mamin, N.N. Bydanov, V.A. Sanin, B.P. Sobolev, and V.I. Simonov, “Atomic Structure of the Nonstoichiometric Phases Sro, 69 Lao. 31 F2, 31,” Sov. Phys. Crystallogr. 31: 145–47 (1986).

    Google Scholar 

  53. A. Roos, M. Buijs, K.E.D. Wapenaar, and J. Schoonman, “Dielectric Relaxation Properties of Tysonite-Type Solid Solutions La1-xRBaxF31-x” J. Phys. Chem. Solids 46: 655–64 (1985).

    Article  ADS  Google Scholar 

  54. M. Ricken, J. Nölting, and I. Riess, “Specific Heat and Phase Diagram of Nonstoichiometric Ceria (CeO2-x),” J. Solid State Chem. 54: 89–99 (1984).

    Article  ADS  Google Scholar 

  55. I. Riess, M. Ricken, and J. Nölting, “On the Specific Heat of Nonstoichiometric Ceria,” J. Solid State Chem. 57: 314–22 (1985).

    Article  ADS  Google Scholar 

  56. P. Knappe and L. Eyring, “Preparation and Electron Microscopy of Intermediate Phases in the Interval Ce, 012 -Ce1 102 0, ” J. Solid State Chem. 58: 312–324 (1985).

    Article  ADS  Google Scholar 

  57. R.T. Tuenge and L. Eyring, “On the Structure of the Intermediate Phases in the Terbium Oxide System,” J. Solid State Chem. 41: 75–89 (1982).

    Article  ADS  Google Scholar 

  58. H. Sato, N. Otsuka, H. Kuwamoto, and G.L. Liedl., “Nonstoichiometry and Defects in V9017,” J. Solid State Chem. 44: 212–29 (1982).

    Article  ADS  Google Scholar 

  59. I. Riess, H. Janczikowski, and J. Nölting, “02 Chemical Potential of Nonstoichiometric Ce02-x,” J. Appl. Phys. 61: 4931–33 (1987).

    Article  ADS  Google Scholar 

  60. J.W. Dawicke and R.N. Blumenthal, “Oxygen Association Pressure Measurements on Nonstoichiometric Cerium Dioxide,” J. Electrochem. Soc. 133 (1986) pp. 904–9.

    Article  Google Scholar 

  61. E.K. Chang and R.N. Blumenthal, “The Nonstoichiometric Defect Structure and Transport Properties of Ce02, in the Near-Stoichiometric Composition Range,” J. Solid State Chem. 72: 330–37 (1988).

    Article  ADS  Google Scholar 

  62. H. Yahiro, K. Eguchi, and H. Arai, “Ionic Conduction and Microstructure of the Ceria-Strontia System,” Solid State Ionics 21: 37–47 (1986).

    Article  Google Scholar 

  63. H.L. Tuller and T.S. Stratton, “Defect Structure and Transport in Oxygen Excess Cerium Oxide-Uranium Oxide Solid Solution,” in Proceedings 3rd Int. Conf. on Transport in Nonstoichiometric Compounds, Penn. State Univ., University Park, PA, U.S.A., June 10–16, 1984.

    Google Scholar 

  64. H.L. Tuller, J.A. Kilner, A.E. McHale, and B.C.H. Steele, “Oxygen Diffusion in Oxygen Excess Ce02-UO2 Solid Solutions” in Reactivity in Solids,“ edited by P. Barrett and L.C. Dufour, Elsevier Science Pub. B.V. (1985) pp. 315–19.

    Google Scholar 

  65. H.H. Fujimoto and H.L. Tuller, “Mixed Ionic and Electronic Transport in Thoria Electrolytes,” in “Fast Ion Transport in Solids,” Vashista, Mundy,, Shenoy eds., Elsevier (1979) pp. 649–52.

    Google Scholar 

  66. M. Inouye, M. Iwase, and T. Mori, “Mixed Ionic and n-Type Electronic Conduction in Commercial Zr02 + 11 mol% CaO Solid Electrolyte,” Transactions ISIJ 21: 54–5 (1981).

    Article  Google Scholar 

  67. M. Kertesz, I. Riess, D.S. Tannhauser, R. Langpape, and F.J. Rohr, “Structure and Electrical Conductivity of Lao. 8 6 Sr0 1 6 Mn0,, ” J. Solid State Chem. 42: 125–29 (1982).

    Article  ADS  Google Scholar 

  68. K. Koto, H. Mori, and Y. Ito, “Oxygen Disorder in the Fluorite-Type Conductors (Bi2 03)1-x (Gd2 0,)x by X-ray and EXAFS Analysis,” Solid State Ionics 18&19: 720–24 (1986).

    Article  Google Scholar 

  69. T. Graia, P. Conflant, J.-C. Boivin and D. Thomas, “High Oxygen Ion Conduction in a Bismuth Oxide-Cadmium Oxide Phase: Conductivity and Transport Number Measurements; Structural Investigations,” Solid State Ionics 18&19: 751–55 (1986).

    Article  Google Scholar 

  70. T. Esaka and H. Iwara, “Oxide Ion and Electron Mixed Conduction in the Fluorite-Type Cubic Solid Solution in the System Bi2 O, -Tb2 O, 5, ” J. Appl. Electrochem. 15: 447–51 (1985).

    Article  Google Scholar 

  71. E. Wuilloud, B. Delley, W.-D. Schneider and Y. Baer, “Spectroscopic Evidence for Localized and Extended f-symmetry States in Ce02,” Phys. Rev. Lett. 53: 202–5 (1984).

    Article  ADS  Google Scholar 

  72. I. Kosacki and J.M. Langer, “Fundamental Absorption Edge of PbF2 and Cd1 _ s Pbx F2 Crystals,” Phys. Rev. 33: 5972–73 (1986).

    ADS  Google Scholar 

  73. G. Couturier, Y. Danto, J. Pistre, J. Salardenne, C. Lacat, J. M. Reau, J. Portier, and S. Vilminot, “The Anionic Conductor PbSnF4: A Study of Thin Film and Ceramics,” in Fast Ion Transport in Solids, Vashishta, Munday and Shenoy eds., Elsevier 1979, pp. 687–90.

    Google Scholar 

  74. J.G. Bednorz and K.A. Miller, “Possible High Tc Superconductivity in the Ba-La-Cu-O System,” Z. Phys. B 64: 189–93 (1986).

    Article  ADS  Google Scholar 

  75. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, “Superconductivity at 93K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure,” Phys. Rev. Lett. 58: 908–10 (1987).

    Article  ADS  Google Scholar 

  76. M.A. Beno, L. Soderholm, D.W. Capone II, D.C. Hinks, J.D. Jorgensen, I.K. Schuller, C.U. Serge, KI. Zhang, and J.D. Grace, “Structure of the Single Phase High Temperature Superconductor YBa2Cu30” Appl. Phys. Lett. 51: 57–9 (1987).

    Article  ADS  Google Scholar 

  77. R.A. Huggins, “Some Non-Battery Applications of Solid Electrolytes and Mixed Conductors,” Solid State Ionics 5: 15–20 (1981).

    Article  Google Scholar 

  78. C.E. Rice and P.M. Bridenbaugh, “Observation of Electrochromism in Solid-State Anodic Iridium Oxide Film Cells Using Fluorine Electrolytes,” Appl. Phys. Lett. 38: 59–61 (1981).

    Article  ADS  Google Scholar 

  79. A.E. McHale and H.L. Tuller, “New Tantala-Based Solid Oxide Electrolytes,” Solid State Ionics 5: 515–18 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Riess, I. (1989). Crystalline Anionic Fast Ion Conduction. In: Tuller, H.L., Balkanski, M. (eds) Science and Technology of Fast Ion Conductors. NATO ASI Series, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0509-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0509-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7842-9

  • Online ISBN: 978-1-4613-0509-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics