Skip to main content

Mixed Ionic-Electronic Conduction in Fast Ion Conductors and Certain Semiconductors

  • Chapter
Science and Technology of Fast Ion Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 199))

  • 230 Accesses

Abstract

Ionic and electronic currents can coexist in the so-called mixed ionic electronic conductors (MIEC). When these conductors interact with non-uniform chemical surroundings, electrical currents are induced in the MIEC. Applied electric fields affect not only the ionic and electronic currents, but also induce chemical changes in the MIEC. Under certain conditions a quasi p-n or p-i-n junction is formed, the structure of which depends on the applied voltage.

This lecture deals with the I-V characteristics and four point conductivity measurements performed on mixed ionic electronic conductors as well as induced chemical changes. The possible use of a MIEC in a fuel cell is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kudo and H. Obayashi, “Oxygen Ion Conduction of the Fluorite-type Lanthanoid Oxide (Ce1 - x Lx O2 - x/z ):I,” J. Electrochem. Soc. 122: 142–7 (1975).

    Article  Google Scholar 

  2. H. Rickert, V. Sattler, and Ch. Wedde, “Thermodynamische Groessen der Elektronen in a-Silbersulfid,” Z. Phys. Chem. NF 98: 339–50 (1975).

    Article  Google Scholar 

  3. J. Sohege and K. Funke, “Composition Dependent Electronic Conductivity and Hall Coefficient of ß-Ag2+8 S,” Ber. Bunsenges. Phys. Chem. 88: 657–63 (1984).

    Google Scholar 

  4. G.E. Knoll, “Radiation Detection and Measurement,” John Wiley & Sons (1979) pp. 414–70.

    Google Scholar 

  5. H. Rickert, “Electrochemistry of Solids, An Introduction,” Springer-Verlag (1982) pp. 157–67.

    Google Scholar 

  6. F. Huber and M. Rottersman, “Graded p-n Junctions in Thin Anodic Oxide Films of Titanium,” J. Appl. Phys. 33: 3385 (1962).

    Article  ADS  Google Scholar 

  7. R.I. Taylor and H.E. Haring, “A Metal-Semiconductor Capacitor,” J. Electrochem. Soc. 103: 611–13 (1956).

    Article  Google Scholar 

  8. A.P. Belova, L.G. Gorskaya and L.N. Zakgeim, “Electrical Properties of Thin Oxide Films on Aluminum, Tantalum and Zirconium,” Soviet Physics — Solid State 3: 1348–53 (1961).

    Google Scholar 

  9. H. Schmalzried, “Solid State Reactions,” Verlag Chemie and Academic Press (1974) pp. 190–95.

    Google Scholar 

  10. J. Vedel, “Electrode Reactions at Electrode — Solid Electrolyte Interfaces,” in Electrode Processes in Solid State Ionics, M. Kleitz and J. Dupuy eds., D. Reidel Pub. Co. (1976) pp 223–59.

    Google Scholar 

  11. D. Braunshtein, D.S. Tannhauser, and I. Riess, “Diffusion-Limited Charge Transport at Platinum Electrodes on Doped CeO2,” J. Electrochem. Soc. 128: 82–9 (1981).

    Article  Google Scholar 

  12. M. Kertesz, I. Riess, D.S. Tannhauser, R. Langpape and E.J. Rohr, “Structure and Electrical Conductivity of Lao . 84Sro . 16MnO3,” J. Solid State Chem. 42: 125–29 (1982).

    Article  ADS  Google Scholar 

  13. L. Heyne, “Electrochemisty of Mixed Ionic-Electronic Conductors” in “Solid Electrolytes,” S. Geller ed., Springer-Verlag 1977, pp. 169–221.

    Google Scholar 

  14. C. Wagner, “Galvanic Cells with Solid Electrolytes Involving Ionic and Electronic Conduction,” in Proc. Int. Comm. Electrochem. Thermodyn. Kinetics (CITCE) 7:361–77 (1957).

    Google Scholar 

  15. L.H. Allen and E. Buhks, “Copper Electromigration in Polycrystalline Copper Sulfide,” J. Appl. Phys. 56: 327–35 (1984).

    Article  ADS  Google Scholar 

  16. C. Wagner, “Equation for Transport in Solid Oxides and Sulfides of Transition Metals,” Prog. Solid State Chem. 10: 3–16 (1975).

    Article  Google Scholar 

  17. G.J. Dudley nd B.C.H. Steele, “Theory and Practice of a Powerful Technique for Electrochemical Investigation of Solid Solution Electrode Materials, ” J. Solid State Chem. 31: 233–47 (1980).

    Article  ADS  Google Scholar 

  18. Ref. 5, pp. 101–10.

    Google Scholar 

  19. I. Riess, “Theoretical Treatment of the Transport Equations for Electrons and Ions in a Mixed Conductor,” J. Electrochem. Soc. 128: 2077–81 (1981).

    Article  Google Scholar 

  20. J. Berger, I. Riess, and D.S. Tannhauser, “Dynamic Measurement of Oxygen Diffusion in Indium-Tin Oxide,” Solid State Ionics 15: 225–31 (1985).

    Article  Google Scholar 

  21. I. Riess and D.S. Tannhauser, “Application of the van -der-Pauw Method to Conductivity Measurements on Mixed Ionic-Electronic Solid Conductors,” Solid State Ionics 7: 307–15 (1982).

    Article  Google Scholar 

  22. I. Riess, “Current-Voltage Relations and Charge Distribution in Mixed Ionic Electronic Solid Conductors,” J. Phys. Chem. Solids 47: 129–38 (1986).

    Article  ADS  Google Scholar 

  23. I. Riess, “Voltage-Controlled Structure of Certain p-n and p-i-n Junctions,” Phys. Rev. B35: 5740–43 (1987).

    Article  ADS  Google Scholar 

  24. F.A. Kroeger, “The Chemistry of Imperfect Crystals,” 2nd ed. Vol. II, North-Holland Publ. Comp. (1974) p. 14.

    Google Scholar 

  25. S. Miyatani, “Experimental Evidence for the Onsager Reciprocal Relation in Mixed Conduction,” Solid State Commun. 38: 257–59 (1981).

    Article  ADS  Google Scholar 

  26. Ref. 5, pp. 87–8, 217–19.

    Google Scholar 

  27. L.J. van-der-Pauw, “ A Method of Measuring Specific Resistivity and Hall Effect on Disks of Arbitrary Shape,” Philips Res. Rept. 13: 1–9 (1958).

    Google Scholar 

  28. H. Obayashi & T. Kudo, “High Temperature Electrolysis/Fuel Cells: Materials Problems” in “Solid State Chemistry and Energy Conversion,” J.B. Goodenough and M.S. Whittingham eds., Am. Chem. Soc. (1977) pp. 316–63.

    Chapter  Google Scholar 

  29. I. Riess, D. Braunshtein and D.S. Tannhauser, “Density and Ionic Conductivity of Sintered (CeO2)o . 82-(GdO1.5)o . 18,” J. Am. Ceram. Soc. 64: 479–85 (1981).

    Article  Google Scholar 

  30. D.S. Tannauser, “The Theoretical Energy Conversion Efficiency of a High Temperature Fuel Cell Based on a Mixed Conductor,” J. Electrochem. Soc. 125: 1277–82 (1978).

    Article  ADS  Google Scholar 

  31. Ref. 5, p. 120.

    Google Scholar 

  32. K. Hauffe, “Reactionen in and an Festen Stoffen,” 2nd ed. Springer-Verlag (1966) pp. 180–7.

    Google Scholar 

  33. Y. Sasaki, “p-i-n Junction in the Anodic Oxide Film of Tantalum,” J. Phys. Chem. Solids 13: 177–86 (1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Riess, I. (1989). Mixed Ionic-Electronic Conduction in Fast Ion Conductors and Certain Semiconductors. In: Tuller, H.L., Balkanski, M. (eds) Science and Technology of Fast Ion Conductors. NATO ASI Series, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0509-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0509-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7842-9

  • Online ISBN: 978-1-4613-0509-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics