Skip to main content

The Common Pond Snail Lymnaea stagnalis

  • Chapter
Animal Species for Developmental Studies

Abstract

The common pond snail is a freshwater species widely used in embryological studies. Oogenesis and egg maturation of the pond snail involve complex events of ooplasmic segregation, including polar as well as mosaic differentiation of the cortical layer [141,144,174]. The role of this layer as a morphogenetic system has been clarified to a large extent in studies employing the pond snail [140, 141]. Typical spiral cleavage enables the fate of individual cell descendants to be traced [175, 176]. Cytoplasmic segregation increases in the course of cleavage and individual cells undergo early differentiation. The divisions rapidly become asynchronous, while the regular rhythm of cleavage in different cell lineages becomes an important prerequisite for normal morphogenesis [23, 31]. These events can be conveniently studied using the pond snail because of the changing structure of the mitotic cycles [18, 19, 24]. Early blastulation in the pond snail correlates with the early appearance of specialized cell junctions at the stage of two blastomeres; junctions play an important part in the physiology of the early embryo [72, 171] and during the critical periods of embryogenesis such as the emergence of the body plan and the dorsoventral organization [25, 137, 141, 143]. The structure of these junctions has been studied intensively at the submicroscopic level using various procedures, including freeze-fracturing techniques [56]. Methods have been developed which enable a three-dimensional reconstruction of the whole embryo from its thin sections to be obtained; these techniques allow a specific determination of the types and number of contacts in individual blastomeres [181]. The cell surface of early embryos has been studied using a scanning electron microscope [126].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Anderson and P. Personne, “The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species,” J. Cell Biol. 44, 29–51 (1970).

    PubMed  CAS  Google Scholar 

  2. P. Ami, “Zur Feinstruktur der Mitteldarmdrüse von Lymnaea stagnalis L. (Gastropoda, Pulmonata),” Z. MorphoL Tiere 77, 1–18 (1974).

    Google Scholar 

  3. P. Arni, “Licht-und elektronenmikroskopische Untersuchungen an Embryonen von Lymnaea stagnalis L. (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der frühembryonalen Ernährung,” Z. MorphoL Tiere 78, 299–323 (1974).

    Google Scholar 

  4. L. Arvy, “Particularités de l’évolution nucléolaire au cours de l’ovogenèse chez Lymnaea stagnalis L,” C. R. Acad. Sci. Paris 228, 1983–1985 (1949).

    CAS  Google Scholar 

  5. R. Aubry, “La structure de l’acinus et la lignée femelle dans la glande hermaphrodite de Lymnaea stagnalis adulte,” C. R. Soc. Biol 148, 1498–1500 (1954).

    Google Scholar 

  6. R. Aubry, “Les éléments nourriciers dans la glande hermaphrodite de Lymnaea stagnalis adulte,” C. R. Soc. Biol. 148, 1626–1629 (1954).

    Google Scholar 

  7. R. Aubry, “La lignée maie dans la glande hermaphrodite àt i adulte,” C. R. Soc. Biol. 148, 1856–1858 (1954).

    Google Scholar 

  8. R. Aubry, “Sur le cycle d’élaboration sexuelle dans la glande hermaphrodite de Lymnaea stagnalis adulte,” C. R. Soc. Biol. 148, 2075–2077 (1954).

    Google Scholar 

  9. R. Aubry, “De la possibilité dune autofécondation dans l’acinus hermaphrodite de Lymnaea stagnalis adulte,” C. R. Soc. Biol. 149, 390–392 (1955).

    Google Scholar 

  10. R. Aubry, “La structure du canal hermaphrodite chez Lymnaea stagnalis adulte,” C. R. Soc. Biol. 148, C. R. Soc. Biol. 150, 1786–1789 (1956).

    Google Scholar 

  11. L. C. Beadle, “Salt and water regulation in the embryos of freshwater pulmonate molluscs. I. The embryonic environment of Biomphalaria sudanica and Lymnaea stagnalis,” J. Exp. Biol. 50, 473–479 (1969).

    PubMed  CAS  Google Scholar 

  12. R. Bekins, “The circulatory system of Lymnaea stagnalis (L.),” Neth. J. Zool. 22, 1–58 (1972).

    Google Scholar 

  13. G. V. Berezkina, “Certain questions of development and function of the limnaeid reproductive system,” in: Ekologiya Zhivotnykh Smolenskoii Sopredelnykh Oblastei [in Russian], Smolensk (1980).

    Google Scholar 

  14. G. V. Berezkina and Ya. I. Starobogatov, “Morphology of egg batches of certain molluscs from the genus Lymnaea (Gastropoda, Pulmonata),” Zool. Zh. 60, 1756–1768 (1981).

    Google Scholar 

  15. A. Berne, “On the life cycle of Lymnaea stagnalis (L.) in the west of Scotland,” Proc. Malacol. Soc. London 36, 283–295 (1965).

    Google Scholar 

  16. J. J. Bezem and C. P. Raven, “Computer simulation of early embryonic development,” J. Theor. Biol. 54, 47–61 (1975).

    PubMed  CAS  Google Scholar 

  17. J. J. Bezem, H. A. Wagemaker, and J. A. M. van den Biggelaar, “Relative cell volumes of the blastomeres in embryos of Lymnaea stagnalis in relation to bilateral symmetry and dorsoventral polarity,” Proc. K. Ned. Akad. Wet. C84, 9–20 (1981).

    Google Scholar 

  18. J. A. M. van den Biggelaar, “Timing of the phases of the cell cycle with tritiated thymidine and Feulgen cytophotometry during the period of synchronous division in Lymnaea,” J. Embryol. Exp. Morphol 26, 351–366 (1971).

    PubMed  Google Scholar 

  19. J. A. M. van den Biggelaar, “Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea,” J. Embryol. Exp. Morphol 26, 367–391 (1971).

    PubMed  Google Scholar 

  20. J. A. M. van den Biggelaar, “RNA synthesis during cleavage of the Lymnaea egg,” Exp. Cell Res. 67, 207–210 (1971).

    PubMed  Google Scholar 

  21. J. A. M. Van den Biggelaar, “Development of dorsoventral polarity preceding the formation of the mesentoblast in Lymnaea stagnalisProc. K. Ned. Akad. Wet. C79, 112–126 (1976).

    Google Scholar 

  22. J. A. M. van den Biggelaar, “The fate of maternal RNA containing ectosomes in relation to the appearance of dorsoventrality in the pond snail, Lymnaea stagnalis,” Proc. K. Ned. Akad. Wet. C79, 421–426 (1976).

    Google Scholar 

  23. J. A. M. van den Biggelaar, “Significance of cellular interactions for the differentiation of the macromeres prior to the formation of the mesentoblast in Lymnaea stagnalis,” Proc. K. Ned. Akad. Wet. C80, 1–12 (1977).

    Google Scholar 

  24. J. A. M. van den Biggelar and E. K. Boon-Niermeijer, “Origin and prospective significance of division asynchrony during early molluscan development,” in: The Cell Cycle in Development and Differentiation, Cambridge University Press, Cambridge (1973).

    Google Scholar 

  25. J. A. M. van den Biggelaar, A. W. C. Dorresteijn, S. W. de Laat, and J. G. Bluemink, “The role of topographical factors in cell interactions and determination of cell lines in molluscan development,” Int. Cell Biol., 526–538 (1980–1981).

    Google Scholar 

  26. J. G. Bluemink, “The subcellular structure of the blastula of Lymnaea stagnalis L. (Mollusca) and the mobilization of the nutrient reserve,” Thesis, Utrecht (1967).

    Google Scholar 

  27. D. A. Boag and P. S. M. Pearlstone, “On the life cycle of Lymnaea stagnalis (Gastropoda, Pulmonata) in southwestern Alberta,” Can. J. Zool. 57, 353–362 (1979).

    Google Scholar 

  28. H. H. Boer and T. Sminia, “Sieve structure of slit diaphragms of podocytes and pore cells of gastropod molluscs,” Cell Tissue Res. 170, 221–229 (1976).

    PubMed  CAS  Google Scholar 

  29. H. H. Boer, C. Groot, M. de Jong-Brink, and C. J. Cornelisse, “Polyploidy in the freshwater snail Lymnaea stagnalis (Gastropoda, Pulmonata). A cytophotometrical analysis of the DNA in neurons and some other cell types,” Neth. J. Zool. 27, 242–252 (1977).

    Google Scholar 

  30. S. Bohlken and J. Joosse, “The effect of photoperiod on female reproductive activity and growth of the freshwater pulmonate snail Lymnaea stagnalis kept under laboratory breeding conditions,” Int. J. Invertebr. Reprod. 4, 213–222 (1982).

    Google Scholar 

  31. E. K. Boon-Niermeijer, “The effect of puromycin on the early cleavage cycles and morphogenesis of the pond snail Lymnaea stagnalisWilhelm Roux’s Arch. Entwicklungsmech. Org. 177, 29–40 (1975).

    CAS  Google Scholar 

  32. E. K. Boon-Niermeijer, “Morphogenesis after heat shock during the cell cycle of Lymnaea: a new interpretation,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 180, 241–252 (1976).

    Google Scholar 

  33. T. Bose, “Onset of alkaline phosphatase synthesis during the embryonic development of Lymnaea sp.,” Indian J. Exp. Biol. 15, 554–555 (1977).

    CAS  Google Scholar 

  34. W. Bottke, I. Sinha, and I. Keil, “Coated vesicle-mediated transport and deposition of vitellogenic ferritin in the rapid growth phase of snail oocytes,” J. Cell Sci. 53, 173–191 (1982).

    CAS  Google Scholar 

  35. A. E. Boycott, C. Diver, S. L. Garstang, and F. M. Turner, “The inheritance of sinistrality in Lymnaea peregra (Mollusca, Pulmonata),” Philos. Trans. R. Soc. London, Ser. B. 219, 51–131 (1930).

    Google Scholar 

  36. R. L. Brahmachary, “Molecular embryology of invertebrates,” in: Advances in Morphogenesis, Vol. 10, Academic Press, New York (1973).

    Google Scholar 

  37. R. L. Brahmachary, T. K. Basu, and K. P. Banerji, “Effects of ATP and EDTA on cleavage of Lymnaea embryos,” Curr. Sci. 37, 505–506 (1968).

    CAS  Google Scholar 

  38. R. L. Brahmachary, K. P. Banerji, and T. K. Basu, “Investigations of transcription on Lymnaea embryos,” Exp. Cell Res. 51, 177–184 (1968).

    PubMed  CAS  Google Scholar 

  39. R. L. Brahmachary and S. R. Palchoudhury, “Further investigations on transcription and translation in Lymnaea embryos,” Can. J. Biochem. 49, 926–932 (1971).

    PubMed  CAS  Google Scholar 

  40. R. L. Brahmachary and P. K. Tapaswi, “A technique for separating the early blastomeres of LymnaeaCurr. Sci. (India) 43, 494 (1974).

    Google Scholar 

  41. L. H. Bretschneider, “Insemination in Lymnaea stagnalisProc. K. Ned. Akad. Wet. 51, 358–362 (1948).

    Google Scholar 

  42. L. H. Bretschneider and C. P. Raven, “Structural and topochemical changes in the egg of Lymnaea stagnalisArch. Néerl., Zool. 10, 1–31 (1951).

    CAS  Google Scholar 

  43. P. Brisson and I. Régondaud, “Observations relatives à l’origine dualiste de l’appareil génital chez quelques gastéropodes pulmonés basommatophores,” C. R. Acad. Sci. Paris D273, 2339–2341 (1971).

    Google Scholar 

  44. P. Brisson and C. Besse, “Étude ultrastructurale de l’ébauche gonadique chez l’embryon de Lymnaea stagnalis L. (gastéropode pulmoné basom– matophore),” Bull. Soc. Zool. Fr. 100, 345–349 (1975).

    Google Scholar 

  45. K. M. Brown, “Effects of experimental manipulations on the life history patterns of Lymnaea stagnalis appressa Say (Pulmonata: Limnaeidae),” Hydrobiologiya 65, 165–176 (1979).

    Google Scholar 

  46. T. Carney and W. L. M. Geilenkirchen, “Cleavage delay and abnormal mor–phogenesis in Lymnaea eggs after pulse treatment with azide of successive states in a cleavage cycle,” J. Embryol. Exp. Morphol. 23, 385–394 (1970).

    Google Scholar 

  47. M. R. Carriker, “Morphology of the alimentary system of the small Lymnaea stagnalis appressa Say,” Trans. Wis. Acad. Sci. Arts Lett. 38, 1–88 (1947).

    Google Scholar 

  48. J. N. Cather, N. H. Verdonk, and G. Zwaan, “Cellular interactions in the early development of the gastropod eye, as determined by deletion experiments.” Malacol. Rev. 9, 77–84 (1976).

    Google Scholar 

  49. R. Cumin, “Normentafel zur Organogenese von Lymnaea stagnalis (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der Mitteldamndrüse,” Rev. Suisse Zool. 79, 709–774 (1972).

    Google Scholar 

  50. M. Dawkins, “Behavioral analysis of coordinated feeding movements in the gastropod Lymnaea stagnalis (L.),” J. Comp. Physiol. 92, 255–271 (1974).

    Google Scholar 

  51. C. Diver and I. Andersson-Kottö, “Sinistrality in Lymnaea peregra (Mollusca, Pulmonata): the problem of mixed broods,” J. Genet. 35, 447–525 (1938).

    Google Scholar 

  52. A. A. Dogterom, “The effect of the growth hormone of the freshwater snail Lymnaea stagnalis on biochemical composition and nitrogenous wastes,” Comp. Biochem. Physiol. B65, 163–167 (1980).

    Google Scholar 

  53. G. E. Dogterom, “Spontaneous and neurohormone-induced ovulation in Lymnaea stagnalis kept under various experimental conditions,” Haliotis 10, 49 (1980).

    Google Scholar 

  54. A. A. Dogterom and A. Doderer, “A hormone-dependent calcium-binding protein in the mantle edge of the freshwater snail Lymnaea stagnalis,” Calcif. Tissue Int. 33, 505–508 (1981).

    PubMed  CAS  Google Scholar 

  55. M. R. Dohmen and J. M. A. van de Mast, “Electron microscopical study of RNA-containing cytoplasmic localizations and intercellular contacts in early cleavage stages of eggs of Lymnaea stagnalis (Gastropoda, Pulmonata),” Proc. K. Ned. Akad. Wet. C81, 403–414 (1978).

    Google Scholar 

  56. A. W. Dorresteijn, J. A. ML van den Biggelaar, J. G. Bluemink, and W. J. Hage, “Electron microscopical investigations of the intêrcellular contacts during the early cleavage stages of Lymnaea stagnalis (Mollusca, Gastropoda),” Wilhelm Roux’s Arch. Dev. Biol. 190, 215–220 (1981).

    Google Scholar 

  57. P. F. Elbers and J. G. Bluemink, “Pinocytosis in the developing egg of Lymnaea stagnalis,” Exp. Cell Res. 21, 619–621 (1960).

    PubMed  CAS  Google Scholar 

  58. P. F. Elbers, “The primary action of lithium chloride on morphogenesis in Lymnaea stagnalis,” J. Embryol. Exp. Morphol. 22, 449–463 (1969).

    PubMed  CAS  Google Scholar 

  59. J. Faber, “Induced rotation of cleavage spindles in Lymnaea stagnalis L.,” Proc. K. Ned. Akad. Wet. C53, 1490–1497 (1950).

    Google Scholar 

  60. L. A. Fraser, “The embryology of the reproductive tract of Lymnaea stagnalis appressa Say,” Trans. Am. Microsc. Soc. 65, 279–298 (1946).

    PubMed  CAS  Google Scholar 

  61. G. Freeman and J. W. Lundelius, “The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregraWilhelm Roux’s Arch. Dev. Biol. 191, 69–83 (1982).

    Google Scholar 

  62. W. L. M. Gellenkirchen, “Differences in lithium effects in Lymnaea after treatment of whole egg masses and isolated egg capsules,” Proc. K. Ned. Akad. Wet. C55, 192–196 (1952).

    Google Scholar 

  63. W. L. M. Gellenkirchen, “The action and interaction of calcium and alkali chlorides on eggs of Lymnaea stagnalis and their chemical interpretation,” Exp. Cell Res. 34, 463–487 (1964).

    Google Scholar 

  64. W. L. M. Geilenkirchen, “Programming of gastrulation during the second cleavage cycle in Lymnaea stagnalis: a study with lithium chloride and actinomycin D,” J. Embryol. Exp. Morphol. 17, 367–374 (1967).

    Google Scholar 

  65. J. C. George, “Experimental fusion of embryos of Lymnaea stagnalis,” Proc. K. Ned. Akad. Wet. C61, 595–597 (1958).

    Google Scholar 

  66. W. P. M. Geraerts and L. H. Algera, “The stimulating effect of the dorsal– body hormone on cell differentiation in the female accessory sex organs of the hermaphrodite freshwater snail, Lymnaea stagnalis,” Gen. Comp. Endocrinol 29. 109–118 (1976).

    PubMed  CAS  Google Scholar 

  67. F. Giusti, “L’ultrastructura dello spermatozoo nella filogenesi e nella sistematica dei molluschi gasteropodi,” Atti Soc. Ital. Sci. Nat. 112, 381–402 (1971).

    Google Scholar 

  68. E. M. Goudsmit, “Galàctogen catabolism by embryos of the freshwater snails, Bulimnaea megasoma and Lymnaea stagnalis,” Comp. Biochem. Physiol. B53, 439–442 (1976).

    CAS  Google Scholar 

  69. B. Grygon and K. Weychert, “Z badan nad gonad obojnacaz Helix pomatia L. i Lymnaea stagnalis L,” Prz. Zool. 18, 72–77 (1974).

    Google Scholar 

  70. A. Gubicza, “Cytotopographical studies on the central nervous system of Lymnaea stagnalis L.,” Magy. Tud. Akad. Tihanyi Biol. Kutatoin Téz Évk. 37, 3–15 (1970).

    Google Scholar 

  71. P. Guerrier, “Origine et stabilité de la polarité animale végétative chez quelques Spiralia,” Ann. Embryol. Morphogen. 1, 119–139 (1968).

    Google Scholar 

  72. T. Guha and R. L. Brahmachary, “Tunicamycin-induced shape transformation in rabbit erythrocytes and loss of adhesion in Lymnaea embryonic cells,” Exp. Cell Biol. 49, 278–282 (1981).

    PubMed  CAS  Google Scholar 

  73. R. E. Harris and W. A. G. Charleston, “Some temperature responses of Lymnaea tomentosa and L. columella (Mollusca: Gastropoda) and their eggs,” N. Z. J. Zool. 4, 45–49 (1977).

    Google Scholar 

  74. O. Hess, “Die Entwicklung von Halbkeimen bei dem Süsswasser-Pulmonaten Lymnaea stagnalis L.,” Wilhelm Roux’s Arch. Dev. Biol. 150, 124–145 (1957).

    Google Scholar 

  75. O. Hess, “Entwicklungsphysiologie der Mollusken,” Forts ehr. Zool. 14, 130–163 (1962).

    CAS  Google Scholar 

  76. O. Hess, “Freshwater gastropoda,” in: Experimental Embryology of Marine and Freshwater Invertebrates, G. Reverberi (ed.), North-Holland, Amsterdam-London (1971).

    Google Scholar 

  77. L. W. Holm, “Histological and functional studies of the genital tract of Lymnaea stagnalis appressa Say,” Trans. Am. Microsc. Soc. 65, 45–68 (1946).

    PubMed  CAS  Google Scholar 

  78. H.–J. Horstmann, “Untersuchungen zur Physiologie der Bagattung und Befruchtung der Schlammschnecke Lymnaea stagnalis,” Z. Morphol. Oekol. Tiere 4, 222–268 (1955).

    Google Scholar 

  79. H.-J. Horstmann, “Ein einfacher Brutapparat für die Eier von Wasserlungen-schnecken,” Zool. Anz. 158, 129–130 (1957).

    Google Scholar 

  80. H.-J. Horstmann, “Sauerstoffverbrauch und Trockengewicht der Embryonen von Lymnaea stagnalis,” Z. Vgl. Physiol. 41, 390–404 (1958).

    CAS  Google Scholar 

  81. J. C. Jager, N. Middelburg-Frielink, J. W. Mooij-Vogelaar, and W. J. van der Steen, “Effects of oxygen and food location on behavior in the freshwater snail Lymnaea stagnalis (L.),” Proc. K. Ned. Akad. Wet. C82, 177–180 (1979).

    Google Scholar 

  82. Br. Jockusch, “Protein synthesis during the first three cleavages in pond snail eggs (Lymnaea stagnalis),” Z. Naturforsch. 23b, 1512–1516 (1968).

    CAS  Google Scholar 

  83. M. de Jong-Brink, L. P. C. Schot, H. J. N. Shoenmakers, and M. J. M. Bergamin-Sassen, “A biochemical and quantitative electron microscope study on steroidogenesis in ovotestis and digestive gland of the pulmonate snail Lymnaea stagnalis,” Gen. Comp. Endorcrinol. 45, 30–38 (1981).

    Google Scholar 

  84. J. Joosse, “Dorsal bodies and dorsal neurosecretory cells of the cerebral gan–glia of Lymnaea stagnalis,” Thesis, Utrecht (1964).

    Google Scholar 

  85. J. Joosse, “Structural and endocrinological aspects of hermaphroditism in pulmpnate snails, with particular reference to Lymnaea stagnalis (L.),” in: Intersexuality in the Animal Kingdom, Berlin (1975).

    Google Scholar 

  86. J. Joosse and J. Lever, “Techniques of narcotization and operation for exeriments with Lymnaea stagnalis (Gastropoda, Pulmonata),” Proc. K. Ned. Akad. Wet. C62, 145–149 (1959).

    Google Scholar 

  87. J. Joosse, H. H. Boer, and C. J. Cornelisse, “Gametogenesis and oviposition in Lymnaea stagnalis as influenced by γ-irradiation and hunger,” Symp. Zool. Soc. London 22,213–235 (1968).

    Google Scholar 

  88. J. Joosse and D. Reitz, “Functional anatomical aspects of the ovotestis of Lymnaea stagnalisMalacologia 9, 101–109 (1969).

    Google Scholar 

  89. J. Joosse, M. A. Hemminga, and H. Loenhout, “The effect of temperature and day length on glycogen storage in the pond snail Lymnaea stagnalis,” Haliotis 10, 73 (1980).

    Google Scholar 

  90. C. Jura and J. C. George, “Observations on the jelly mass of the eggs of three molluscs, Succinea putris, Lymnaea stagnalis, and Planorbis corneus with special reference to metachromasia,” Proc. K. Ned. Akad. Wet. C61, 590–594 (1958).

    CAS  Google Scholar 

  91. N. N. Kamardin and T. P. Tsirulis, “Electron microscopic study of the pond snail osphradium,” Tsitologiya 22, 266–270 (1980).

    Google Scholar 

  92. R. G. Kessel and H. W. Beams, “10–12 nm filaments in the sperm of Lymnaea stagnalis,” J. Submicrosc. Cytol 13, 551–560 (1981).

    Google Scholar 

  93. V. V. Khlebovitch and V. V. Lukanin, “Survival of spermatozoa of certain molluscs in sea water of different salinity,” Dokl. Akad. Nauk SSSR 192, 203–204 (1970).

    Google Scholar 

  94. L. Kielbowna and B. Koscielski, “A cytochemical and autoradiographic study of oocyte nucleoli in Lymnaea stagnalis L.,” Cell Tissue Res. 152, 103–111 (1974).

    PubMed  CAS  Google Scholar 

  95. K. S. Kits, “States of excitability in ovulation hormone producing neuroendocrine cells of Lymnaea stagnalis (Gastropoda) and their relation to the egg-laying cycle,” J. Neurobiol. 11, 397–410 (1980).

    PubMed  CAS  Google Scholar 

  96. K. S. Kits, “Electrophysiology of the caudo-dorsal neuroendocrine cells in Lymnaea stagnalis (Gastropoda),” Comp. Biochem. Physiol. A72, 91–97 (1982).

    Google Scholar 

  97. W. P. W. van der Knaap, T. Sminia, F. G. M. Kroese, and R. Dikkeboom, “Elimination of bacteria from the circulation of the pond snail Lymnaea stagnalis,” Dev. Comp. Immunol. 5, 21–32 (1981).

    PubMed  Google Scholar 

  98. E. Kniprath, “Das Wachstum des Mantels von Lymnaea stagnalis (Gastropoda),” Cytobiologie 10, 260–267 (1975).

    Google Scholar 

  99. E. Kniprath, “Zur Ontogenese des Schalenfeldes von Lymnaea stagnalisWilhelm Rowc’s Arch. Dev. Biol. 181, 11–30 (1977).

    Google Scholar 

  100. A. Kordylewska, “Effect of phenol on the cell structure of the embryos of Lymnaea stagnalis L. (Gastropoda, Pulmonata). Light and electron micro¬scopic study,” Acta Biol. Cracov. Ser. Zool. 22, 89–98 (1980).

    CAS  Google Scholar 

  101. Z. Ya. Kruglyanskaya and D. A. Sakharov, “Appearance of biogenic monoamines in the developing nervous system of Lymnaea stagnalis embryos,” Ontogenez 6, 194–197 (1975).

    Google Scholar 

  102. V. Labordus, “The effect of ultraviolet light on developing eggs of Lymnaea stagnalis (Mollusca, Pulmonata). I. The pattern of the effect on mitotic cycles,” Proc. K. Ned. Akad. Wet. C73, 366–381 (1970).

    Google Scholar 

  103. S. Letelier and O. Ciolpan, “Contributions to the study of prolificity of the molluscs Lymnaea stagnalis (L.) and Planorbarius corneus (L.) (Gastropoda, Pulmonata) in natural conditions,” Trav. Mus. Hist. Nat. Grigore Antipa 22, 229–233 (1980).

    Google Scholar 

  104. O. V. Levina, “Fertility of the freshwater molluscs Lymnaea stagnalis and Radix ovata” Zool. Zh. 52, 676–684 (1973).

    Google Scholar 

  105. D. L. Luchtel, “An ultrastructural study of the egg and early cleavage stages of Lymnaea stagnalis, a pulmonate mollusc,” Am. Zool. 16, 405–419 (1976).

    Google Scholar 

  106. A. ter Maat, J. C. Lodder, J. Veenstra, and J. T. Goldschmeding, “Suppression of egg-laying during starvation in the snail Lymnaea stagnalis by inhibition of the ovulation hormone producing caudo-dorsal cells,” Brain Res. 239, 535–542 (1982).

    PubMed  Google Scholar 

  107. L. Merenyi, “A kannibalizmus egy megfigyelt esete akvariumban tartott Lymnaea stagnalis (L.) egyedek kozott,” Soosiana 8, 3–4 (1980).

    Google Scholar 

  108. V. N. Meshcheryakov, “Invariability of dissymmetrical cytokinesis in the centrifuged zygotes of pulmonate molluscs,” Ontogenez 8, 435–441 (1977).

    Google Scholar 

  109. V. N. Meshcheryakov, “Isolation of the mitotic apparatus from the eggs and embryos of pulmonate mollusc Lymnaea stagnalis L.,” Tsitologiya 20, 1211–1215 (1978).

    Google Scholar 

  110. V. N. Meshcheryakov, “Orientation of cleavage spindles in pulmonate molluscs. I. Role of blastomere form in orientation of the second cleavage spindles,” Ontogenez 10, 558–566 (1978).

    Google Scholar 

  111. V. N. Meshcheryakov, “Orientation of cleavage spindles in pulmonate molluscs. II. Role of architecture of intercellular contacts in orientation of the third and fourth cleavage spindles,” Ontogenez 9, 567–575 (1978).

    Google Scholar 

  112. V. N. Meshcheryakov, “Dynamics of the cell surface during early cleavage and its relation to the polarity of the zygote in Gastropoda,” Zh. Obshch. Biol. 39, 916–926 (1978).

    Google Scholar 

  113. V. N. Meshcheryakov, “Isolation of the egg cortical layer in pulmonate molluscs,” Ontogenez 12, 177–186 (1981).

    Google Scholar 

  114. V. N. Mescheryakov, “Simulation of spiral cytokinesis by membrane ghosts of the pond snail zygotes,” Ontogenez 14, 82–85 (1983).

    Google Scholar 

  115. V. N. Meshcheryakov and L. N. Beloussov, “Spatial organization in cleavage,” in: Morphology of Man and Animals. Anthropology, Vol. 8 [in Russian], VINITI, Academy of Sciences of the USSR, Moscow.

    Google Scholar 

  116. V. N. Meshcheryakov and G. V. Veryasova, “Orientation of cleavage spindles in pulmonate molluscs. III. Form and location of mitotic apparatus in binucleate zygotes and blastomeres,” Ontogenez 10, 24–35 (1979).

    Google Scholar 

  117. V. N. Meshcheryakov and L. V. Beloussov, “Changes in the spatial organization of early cleavage of molluscs Lymnaea stagnalis L. and Physafontinalis L. under the effect of trypsin,” Ontogenez 4, 359–372 (1973).

    Google Scholar 

  118. V. N. Meshcheryakov and L. V. Beloussov, “Asymmetrical rotations of blastomeres in early cleavage of Gastropoda,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 177, 193–203 (1975).

    Google Scholar 

  119. V. N. Meshcheryakov and L. G. Filatova, “Contractile phenomena in a model nonmuscle system,” Biofizika 26, 1057–1062 (1981).

    CAS  Google Scholar 

  120. V. N. Meshcheryakov and L. G. Filatova, “Comparative electron-microscopic study of the snail egg microfilaments and muscle F-actin,” Stud. Bio phys. 107, No. 1, 5–12 (1985).

    CAS  Google Scholar 

  121. J. W. Mooij-Vogelaar, J. C. Jager, and W. J. Steen, “The effect of density changes on the reproduction of the pond snail Lymnaea stagnalis (L.),” Neth. J. Zool. 20, 279–288 (1970).

    Google Scholar 

  122. J. W. Mooij-Vogelaar and W. J. van der Steen, “Effect of density on feeding and growth in the pond snail Lymnaea stagnalis (L.),” Proc. K. Ned. Akad. Wet. C76, 61–68 (1973).

    Google Scholar 

  123. J. B. Morrill, C. A. Blair, and W. J. Larsen, “Regulative development in the pulmonate gastropod, Lymnaea stagnalis, as determined by blastomere deletion experiments,” J. Exp. Zool. 183, 47–55 (1973).

    Google Scholar 

  124. J. B. Morrill and F. O. Perkins, “Microtubules in the cortical region of the egg of Lymnaea during cortical segregation,” Dev. Biol. 33, 206–212 (1973).

    PubMed  CAS  Google Scholar 

  125. J. B. Morrill, R. W. Rubin, and M. Grandi, “Protein synthesis and differentiation during pulmonate development,” Am. Zool. 16, 547–561 (1976).

    CAS  Google Scholar 

  126. J. B. Morrill and L. E. Macey, “Cell surface changes during the early cleavages of the pulmonate snail, Lymnaea palustrisAm. Zool. 19, 246 (1979).

    Google Scholar 

  127. J. B. Morrill, “Development of the pulmonate gastropod, Lymnaea” in: Developmental Biology of Freshwater Invertebrates, F. W. Harrison and R. R. Cowden (eds.), A. R. Liss, Inc., New York (1982).

    Google Scholar 

  128. L. Mulherkar, S. Goel, and M. V. Joshi, “Effects of cytochalasin H on the cleaving eggs of Lymnaea acuminataIndian J. Exp. Biol. 15, 1089–1092 (1977).

    CAS  Google Scholar 

  129. V. S. Musienko and M. A. Kostenko, “Effect of cAMP upon morphological differentiation of adult molluscs neurons in culture,” Tsitologiya 24, 264–269 (1982).

    CAS  Google Scholar 

  130. A. A. Neyfakh, “Radiation investigation of nucleocytoplasmic interrelations in morphogenesis and biochemical differentiation,” Nature (London) 201, 880–884 (1964).

    CAS  Google Scholar 

  131. A. A. Neyfakh, “Morphogenetic nuclear function in the early development of the common pond snail (Lymnaea stagnalis),” Ontogenez 1, 630–632 (1976).

    Google Scholar 

  132. O. I. Patrusheva and F. M. Sokolina, “Certain aspects of keeping the lymneids in aquariums and their reproduction,” in: Problems of Malacology of Siberia [in Russian], Tomsk (1969).

    Google Scholar 

  133. B. Plesch, “An ultrastructural study of the musculature of the pond snail Lymnaea stagnalis (L.),” Cell Tissue Res. 180, 317–340 (1977).

    PubMed  CAS  Google Scholar 

  134. B. Plesch, M. de Jong-Brink, and H. H. Boer, “Histological and histochemical observations on the reproductive tract of the hermaphrodite pond snail Lymnaea stagnalis (L.),” Neth. J. Zool. 20 (1971).

    Google Scholar 

  135. N. B. Pullan, F. M. Clino, and C. B. Mansfield, “Studies on the distribution and ecology of the family Lymnaeidae (Mollusca: Gastropoda) in New Zealand,” J. R. Soc. N. Z. 2, 393–405 (1972).

    Google Scholar 

  136. C. P. Raven, in: Experimental Embryology in the Netherlands, 1940–1945, M. W. Woerdeman and C. P. Raven (eds.), Elsevier, New York-Amsterdam (1946).

    Google Scholar 

  137. C. P. Raven, “Morphogenesis in Lymnaea stagnalis and its disturbance by lithium,” J. Exp. Zool. 121, 1–78 (1952).

    Google Scholar 

  138. C. P. Raven, “Abnormal development of the foregut in Lymnaea stagnalis,” J. Exp. Zool. 139, 189–245 (1958).

    PubMed  CAS  Google Scholar 

  139. C. P. Raven, Oogenesis: The Storage of Developmental Information, Macmillan ( Pergamon Press ), New York (1961).

    Google Scholar 

  140. C. P. Raven, Morphogenesis: The Analysis of Molluscan Development, 2nd edn., Pergamon Press, New York (1966).

    Google Scholar 

  141. C. P. Raven, “The cortical and subcortical cytoplasm of the Lymnaea egg,” Int. Rev. Cytol. 28, 1–4 (1970).

    PubMed  CAS  Google Scholar 

  142. C. P. Raven, “Chemical embryology of molluscs,” in: Chemical Zoology, Vol. 7, Mollusca, M. Florkin and B. T. Scheer (eds.), Academic Press, New York (1972).

    Google Scholar 

  143. C. P. Raven, “Further observations on the distribution of cytoplasmic substances among the cleavage cells in Lymnaea stagnalis,” J. Embryol. Exp. Morphol. 31, 37–59 (1974).

    PubMed  CAS  Google Scholar 

  144. C. P. Raven, “Morphogenetic analysis of spiralian development,” Am. Zool. 16, 395–03 (1976).

    Google Scholar 

  145. C. P. Raven, J. J. Bezem, and J. Isings, “Changes in size relation between macromeres and micromeres of Lymnaea under the influence of lithium,” Proc. K. Ned. Akad. Wet. C55, 248–258 (1952).

    Google Scholar 

  146. C. P. Raven and U. P. van der Wal, “Analysis of the formation of the animal pole plasm in the eggs of Lymnaea stagnalisJ. Embryol. Exp. Morphol. 12, 123–139 (1964).

    PubMed  CAS  Google Scholar 

  147. J. Régondaud, “Development de la cavité pulmonaire et de la cavité palléale chez Lymnaea stagnalisC. R. Acad. Sci. Paris 252, 179–181 (1961).

    Google Scholar 

  148. J. Régondaud, “Origine embryonnaire de la cavité pulmonaire de Lymnaea stagnalis. Considerations particulières sur la morphogenèse de la commisure viscérale,” Bull. BioL Fr. Belg. 98, 433–471 (1964).

    Google Scholar 

  149. J. Régondaud and P. Brisson, “Données radioautographiques après incorpo–ration de leucine tritiée dans les cellules nucales de l’embryon de Lymnaea stagnalis L. (gastéropode pulmoné basommatophore),” Bull. Soc. Zool. Fr. 101, 477–480 (1976).

    Google Scholar 

  150. A. Richards, “The development rate and oxygen consumption of snail eggs at various temperatures,” Z. Naturforsch. 20b, 347–349 (1965).

    CAS  Google Scholar 

  151. J. E. Rigby, “The fine structure of the oocyte and follicle cells of Lymnaea stagnalis, with special reference to the nutrition of the oocyte,” Malacologie 18, 377–380 (1979).

    CAS  Google Scholar 

  152. E. W. Roubos, W. P. M. Geraerts, G. H. Boerrigter, and G. P. J. Kampen, “Control of the activities of the neurosecretory light green and caudo-dorsal cells and of the endocrine dorsal bodies by the lateral lobes in the freshwater snail Lymnaea stagnalis (L.),” Gen. Comp. Endocrinol. 40, 446–454 (1980).

    PubMed  CAS  Google Scholar 

  153. E. W. Roubos, A. N. de Keijzer, and P. Buma, “Adenylate cyclase activity in axon terminals of ovulation-hormone-producing neuroendocrine cells of Lymnaea stagnalis (L.),” Cell Tissue Res. 220, 665–668 (1981).

    PubMed  CAS  Google Scholar 

  154. T. Salih, O. Al-Habbib, W. Al-Habbib, S. Al-Zako, and T. Ali, “The effects of constant and changing temperatures on the development of eggs of the freshwater snail Lymnaea auricularia (L.),” J. Therm. Biol. 6, 379–388 (1981).

    Google Scholar 

  155. E. A. Sapaev, “Concerning intraspecific differentiation of Chaetogaster lymnaei (Baer, 1827),” in: Evolutionary Morphology of Invertebrate Animals [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  156. J. E. M. Scheerboom and A. Doderer, “The effects of artificially raised haemolymph-glucose concentrations on feeding, locomotory activity, growth, and egg production of the pond snail Lymnaea stagnalis (L.),” Proc. K. Ned. Akad. Wet. C81, 377–386 (1978).

    CAS  Google Scholar 

  157. J. E. W. Scheerboom and R. van Elk, “Field observations on the seasonal variations in the natural diet and the haemolymph-glucose concentration of the pond snail Lymnaea stagnalis (L.),” Proc. K. Ned. Akad. Wet. C81, 365–376 (1978).

    Google Scholar 

  158. L. C. Schlichter, “Ion relations of haemolymph, palliai fluid, and mucus of Lymnaea stagnalis,” Can. J. Zool. 59, 605–613 (1981).

    CAS  Google Scholar 

  159. C. T. Slade, J. Mills, and W. Winlow, “The neuronal organization of the paired pedal ganglia of Lymnaea stagnalis (L.),” Comp. Biochem. Physiol. A69, 789–803 (1981).

    Google Scholar 

  160. T. Sminia, N. D. de With, J. L. Bos, M. E. van Nieuwmegen, M. P. Witter, and J. Wondergem, “Structure and function of the calcium cells of the fresh-water pulmonate snail Lymnaea stagnalis,” Neth. J. Zool. 27, 195–208 (1977).

    CAS  Google Scholar 

  161. Y. I. Starobogatov, “Taxonomy and phylogeny of Lymnaeidae (Gastropoda, Pulmonata, Basommatophora)”, in: Problems of Ecology [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  162. V. I. Starostin, N. V. Potapina, and G. P. Satdykova, “Certain aspects on histogenesis of blood and connective tissue in gastropod molluscs,” in: Cytological Mechanisms of Histogenesis [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  163. W. J. van den Steen, N. van Hoven, and J. Jager, “A method for breeding and studying freshwater snails under continuous water change, with some remarks on growth and reproduction in Lymnaea stagnalis L.,” Neth. J. Zool. 19, 131–139 (1969).

    Google Scholar 

  164. W. J. van der Steen, “Periodic oviposition in the freshwater snail Lymnaea stagnalis: a new type of endogenous rhythm,” Acta Biotherm. 19, 87–93 (1970).

    Google Scholar 

  165. W. J. van der Steen, J. C. Jager, and D. Tiemersma, “The influence of food quantity on feeding, reproduction, and growth in the pond snail Lymnaea stagnalis (L.) with some methodological comments,” Proc. K. Ned. Akad. Wet. C76, 47–60 (1973).

    Google Scholar 

  166. C. J. Stoll, P. Sloep, Y. Veerman-van Duivenbode, and H. A. van der Woude, “Light-sensitivity in the pulmonate gastropod Lymnaea stagnalis: peripherally located shadow-receptors,” Proc. K. Ned. Akad. Wet. C79, 510–516(1976).

    Google Scholar 

  167. R. Storey, “The importance of mineral particles in the diet of Lymnaea peregra (Müller),” J. Conchol. 27, 191–195 (1970)

    Google Scholar 

  168. A. H. Sturtevant, “Inheritance of direction of coiling in LymnaeaScience (Wash.) 58, 1501, 269–270 (1923).

    CAS  Google Scholar 

  169. P. K. Tapaswi, “RNA synthesis during oogenesis to the onset of fertilization in the mollusc Lymnaea,” Z. Naturforsch. 27b, 581–582 (1972).

    CAS  Google Scholar 

  170. H. H. Taylor, “The ionic properties of the capsular fluid bathing embryos of Lymnaea stagnalis and Biomphalaria sudanica (Mollusca, Pulmonata),” J. Exp. Biol. 59, 543–564 (1973).

    CAS  Google Scholar 

  171. H. H. Taylor, “The ionic and water relations of embryos of Lymnaea stagnalis, a freshwater pulmonate mollusc,” J. Exp. Biol. 69, 143–172 (1977).

    CAS  Google Scholar 

  172. L. P. M. Timmermans, “Studies on shell formation in molluscs,” Neth. J. Zool. 19, 417–523 (1969).

    CAS  Google Scholar 

  173. N. N. Tretyak and M. A. Kostenko, “Dependence of RNA synthesis and formation of processes in isolated pulmonate neurons in culture on ionic composition and osmolality of the nutrient medium,” Tsitologiya 20, 643–650 (1978)

    CAS  Google Scholar 

  174. G. A. Übbels, “A cytochemical study of oogenesis of the pond snail Lymnaea stagnalis,” Thesis, Utrecht (1968).

    Google Scholar 

  175. N. H. Verdonk, “Morphogenesis of the head region in Lymnaea stagnalis L.,” Thesis, Utrecht (1965).

    Google Scholar 

  176. N. H. Verdonk, “The determination of bilateral symmetry in the head region of Lymnaea stagnalis,” Acta Embryol. Morphol. Exp. 10, 211–227 (1968).

    Google Scholar 

  177. N. H. Verdonk, “Gene expression in early development of Lymnaea stagnalis,” Dev. Biol. 35, 29–35 (1973).

    PubMed  CAS  Google Scholar 

  178. C. H. Waddington, M. M. Perry, and E. Okada, “‘Membrane knotting’ between blastomeres of Lymnaea,” Exp. Cell. Res. 23, 631–633 (1961).

    Google Scholar 

  179. U. P. van der Wal, “The mobilization of the yolk of Lymnaea stagnalis (Mollusca) I. A structural analysis of the differentiation of the yolk granules,” Proc. K. Ned. Akad. Wet. C79, 393–404 (1976).

    Google Scholar 

  180. U. P. van der Wal, “The mobilization of the yolk of Lymnaea stagnalis. II. The localization and function of the newly synthesized proteins in the yolk granules during early embryogenesis,” Proc. K. Ned. Akad. Wet. C79, 405–420 (1976).

    Google Scholar 

  181. U. P. van der Wal and M. R. Dohmen, “A method for the orientation of small and delicate objects in embedding media for light and electron microscopy,” Stain Technol. 53, 56–57 (1978).

    PubMed  Google Scholar 

  182. W. A. Warneck, “Uber die Bildung und Entwicklung des Embryos bei Gasteropoden,” Bull. Soc. Nat. Moscou 23, 90–194 (1850).

    Google Scholar 

  183. N. D. de With, “Water turnover, ultrafiltration, renal water reabsorption and renal circulation in fed and starved specimens of Lymnaea stagnalis, adapted to different external osmolalities,” Proc. K. Ned. Akad. Wet. C83, 109–120 (1980).

    Google Scholar 

  184. N. D. de With and A. A. Dogterom, “Calcium regulation in the freshwater snail Lymnaea stagnalis,” Haliotis 10, 45 (1980).

    Google Scholar 

  185. O. V. Zaitseva, V. A. Kovalev, and L. S. Bocharova, “Study of morphofunctional relationships between sensor epithelium and statoconia in the statocyst of Lymnaea stagnalis,” Zh. Evol. Biokhim. Fiziol. 14, 307–309 (1978).

    PubMed  CAS  Google Scholar 

  186. O. V. Zaitseva, “Skin innervation of the pulmonate molluscs,” Arkh. Anat., Gistol. Embriol. 78, 32–39 (1980).

    CAS  Google Scholar 

  187. V. I. Zhadin, “Molluscs occurring in freshwater and brackish habitats in the USSR,” in: Handbook of USSR Fauna, Vol. 46 [in Russian], Nauka, Moscow-Leningrad (1952).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Consultants Bureau, New York

About this chapter

Cite this chapter

Meshcheryakov, V.N. (1990). The Common Pond Snail Lymnaea stagnalis . In: Dettlaff, T.A., Vassetzky, S.G. (eds) Animal Species for Developmental Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0503-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0503-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7839-9

  • Online ISBN: 978-1-4613-0503-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics