Skip to main content
  • 325 Accesses

Abstract

Tubifex tubifex Müll. (Annelida, Oligochaeta) serves as a classic model in experimental and biochemical embryology. The development of this worm is an impressive example of ooplasmic segregation which occurs prior to the first cleavage as a formation of pole plasms rich in mitochondria and endoplasmic reticulum [16]. Owing to the strictly determined heteroquadrant spiral cleavage, the material of these plasms is distributed over definite individual blastomeres [43, 44]. Therefore Tubifex has for a long time been used for studying the problem of the early localization of anlage, using methods such as centrifugation, blastomere isolation, and cytochemistry [12, 17, 31]. As different blastomeres may easily be identified during early cleavage, the biochemical characteristics of certain cells or groups of cells may be studied in relation to subsequent differentiation [4, 69, 70].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arillo, “Scambio di molecole organiche fra ambiente e Tubifex tubifex. I. Assimilazione di acido lattico e relativi effetti sugli acidi del ciclo di Krebs,” Boll. Mus. Ist. Biol. Univ. Genova 42, 133–144 (1974).

    Google Scholar 

  2. A. Arillo, “Scambio di molecole organiche fra ambiente e Tubifex tubifex. IL Espulsione di acidi bi-tricarbossilici da parte di esemplari sotto-posti a diverse condizioni ambientali,” Boll. Mus. Ist. Biol. Univ. Genova 43, 105–144 (1975).

    Google Scholar 

  3. P. Braidotti and M. Ferraguti, “Two sperm types in the spermatozeugmata of Tubifex tubifex (Annelida, Oligochaeta),” J. Morphol. 171, 123–136 (1982).

    Article  Google Scholar 

  4. J. Brächet, The Biochemistry of Development, Vol. 2, Pergamon Press, New York (1960).

    Google Scholar 

  5. R. Brandsch and P. Jitariu, “Der Einfluss eines pulsierenden elektro-magnetischen Feldes auf die Entwicklung und die ersten Furchungsteilen der Embryonen von Tubifex tubifex,” Rev. Roum. Biol., Ser. Zool. 15, 431–436 (1970).

    Google Scholar 

  6. R. Brandsch and P. Jitariu, “Influence of colchicine and theophilline combined with an electromagnetic field on the first divisions of Tubifex eggs,” Rev. Roum. Biol., Ser. Zool. 16, 215–220 (1971).

    CAS  Google Scholar 

  7. R. Brandsch, “Cleavage of Tubifex eggs under various conditions of magnetic field applied at different periods in the cell cycle,” Rev. Roum. Biol., Ser. Zool. 17, 121–130 (1972).

    Google Scholar 

  8. R. Brandsch, “Embryogenetic and genetic consequences of the treatment of Tubifex eggs with magnetic fields,” Rev. Roum. Biol. Ser. Zool. 18, 221–225 (1973).

    Google Scholar 

  9. F. Carrano, “L’azione del γ-dinitrofenolo sulle nuova di Tubifex rivulorum,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat. Rend. 19, 85–88 (1955).

    CAS  Google Scholar 

  10. J. M. Cather, “Cellular interaction in the regulation of development in an–nelids and molluscs,” Adv. Morphogenesis 9, 67–125 (1971).

    CAS  Google Scholar 

  11. O. V. Chekanovskaya, Aquatic Oligochaeta of the USSR Fauna. Keys to the USSR Fauna [in Russian], Nauka, Moscow-Leningrad (1962).

    Google Scholar 

  12. J. R. Collier, “Morphogenetic significance of biochemical patterns in mosaic embryos,” in: Biochemistry of Animal Development, Vol. I, R. Weber (ed.), Academic Press, New York-Amsterdam (1965).

    Google Scholar 

  13. H. Degn and B. Kristensen, “Low sensitivity of Tubifex sp. respiration to hydrogen sulfide and other inhibitors,” Comp. Biochem. Physiol. B69, 809–817 (1981).

    Google Scholar 

  14. E. Fischer and I. Horvath, “Cytological and cytochemical studies on the chloragocytes of Tubifex tubifex Müll, with special regard to their role in hemi-metabolism,” Zool Am. 201, 31–43 (1978).

    CAS  Google Scholar 

  15. T. P. Fleming, “The ultrastructure and histochemistry of the spermathecae of Tubifex tubifex (Annelida: Oligochaeta),” J. Zool 193, 129–145 (1981).

    Article  CAS  Google Scholar 

  16. M. Henzen, “Cytologische und mikrocytologische Studien über die ooplas– matische Segregation während der Meiose des Tubifex-Eies,” Z. Zellforsch. 71, 415–440 (1966).

    Article  Google Scholar 

  17. O. Hess, “Entwicklungsphysiologie der Anneliden,” Fortschr. Zool 16, 347–349 (1963).

    Google Scholar 

  18. Y. Hirao, “Reproductive system and oogenesis in the freshwater oligochaete, Tubifex hattai,” J. Fac. Sci. Hokkaido Univ., Ser. VI Zool 15, 439–448 (1964).

    Google Scholar 

  19. Y. Hirao, “Cocoon formation in Tubifex with its relation to activity of the clitellar epithelium,” J. Fac. Sci. Hokkaido Univ., Ser. VI Zool 15, 625–632 (1965).

    Google Scholar 

  20. Y. Hirao, “Cytological study of fertilization in Tubifex egg,” Dobutsugaku Zasshi (Zool Mag.) 77, 340–346 (1968).

    Google Scholar 

  21. K. H. Hoffman, T. Mustafa, and J. B. Jefrgensen, “Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme, and lactate dehydrogenase in anaerobic energy metabolism of Tubifex sp.,” J. Comp. Physiol. B130, 337–345 (1979).

    Google Scholar 

  22. M. Inase, “On the double embryo of the aquatic worm Tubifex hattai” Sci. Rep. Tohoku Univ., Ser. 4 26, 59–64 (1960).

    Google Scholar 

  23. M. Inase, “The culture solution of the eggs of Tubifex,” Sci. Rep. Tohoku Univ., Ser. 4 26, 65–67 (1960).

    Google Scholar 

  24. M. Inase, “Behavior of the pole plasm in the early development of the aquatic worm, Tubifex hattai” Sci. Rep. Tohoku Univ., Ser. 4 33, 223–231 (1967).

    Google Scholar 

  25. P. P. Ivanov, Textbook of General and Comparative Embryology [in Russian], Uchpedgiz, Leningrad (1945).

    Google Scholar 

  26. H. Jaana, T. Shimizu, C. Suzutani-Shiota, and R. Yasumara, “Fine structure and chemical properties of the wall of the Tubifex cocoon,” Dobutsugaku Zasshi (ZooL Mag.) 89, 130–137 (1980).

    CAS  Google Scholar 

  27. J. R. Kaster, “Morphological development and adaptive significance of autotomy and regeneration in Tubifex tubifex Müller,” Trans. Am. Microsc. Soc. 98, 473–477 (1979).

    Article  Google Scholar 

  28. D. Kosiorek, “Development cycle of Tubifex tubifex Müll, in experimental culture,” Pol. Arch. Hydrobiol. 21, 411–422 (1974).

    Google Scholar 

  29. F. E. Lehmann, “Die Zucht von Tubifex für Laboratoriumzwecke,” Rev. Suisse Zool 48, 559–561 (1941).

    Google Scholar 

  30. F. E. Lehmann, “Zur Entwicklungsphysiologie der Polplasmen des Eies von Tubifex,” Rev. Suisse Zool 55, 1–43 (1948).

    Google Scholar 

  31. F. E. Lehmann, “Plasmatische Eiorganization und Entwicklungsleitung bei Keim vom Tubifex (Spiralia),” Naturwissenschaften 43, 289–296 (1956).

    Article  Google Scholar 

  32. F. E. Lehmann, “Synergie et antagonisme des substances antimitotiques et morphostatiques et leur influence sur l’activité morphogénétique de l’hyaloplasme embryonnaire,” in: L’action antimitotique et caryoclasique de substances chimiques, Coiloque Intern. B88, 125 (1960).

    Google Scholar 

  33. F. E. Lehmann and H. Hadorn, “Vergleichende Wirkungsanalyse von zwei antimitotischen Stoffen, Colchicin und Benzochinon, am Tubifex-Ei” Helv. Physiol. Pharmacol. Acta 4, 11–42 (1946).

    PubMed  CAS  Google Scholar 

  34. F. Lehmann, M. Henzen, and F. Geiger, “Cytological and electron microscopic study of Tubifex eggs and Amoeba proteus cytoplasmic components in the living and fixed state,” in: Cell Ultrastructure and Function [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  35. I. I. Malevich, “Oligochaeta,” in; Life of Animals, Vol. 1 [in Russian], Prosveshchenye, Moscow (1968).

    Google Scholar 

  36. M. Matsumoto and M. Kusa, “Time-lapse cinematographic recording of Tubifex eggs during maturation and early cleavage,” Dobutsugaku Zasshi (ZooL Mag.) 75, 270–275 (1966).

    Google Scholar 

  37. M. Matsumoto, “A cytological study of ash distribution in the embryo of an oligochaete, Tubifex hattai,” Dobutsugaku Zasshi (Zoöl. Mag.) 77, 12–18 (1968).

    Google Scholar 

  38. M. Matsumoto, “Concerning mucoid substances in the region of cleavage furrows of the developing embryos of aquatic Oligochaetes,” Dobutsugaku Zasshi (Zool. Mag.) 77, 44–51 (1968).

    Google Scholar 

  39. M. Matsumoto, “Histochemical characteristics of a mucoid substance present in the region of the cleavage furrow of Tubifex eggs,” Dobutsugaku Zasshi (Zool. Mag.) 77, 81–86 (1968).

    Google Scholar 

  40. A. Meyer, “Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. nebst Bemerkungen zum natürlichen System der Oligochäten,” Z. Wiss. Zool. 133, 517–562 (1929).

    Google Scholar 

  41. A. Meyer, “Ein atavistischer Tubifex-Embryo mit überzähligem Gonoblastenpaar und seine Bedeutung für die Theorie der Segmentstauchung bei den Oligochäten,” Zool. Am. 85, 321–329 (1929).

    Google Scholar 

  42. F. Palazzo, “Effetti dell’azide sodico sulFuovo di Tubifex rivulorum” Ric. Sci. 25, 2873–2876 (1955).

    CAS  Google Scholar 

  43. A. Penners, “Die Furchung von Tubifex rivulorum Lam,” Zool. Jahrb. Abt. 2 43, 323–368 (1922).

    Google Scholar 

  44. A. Penners, “Die Entwicklung des Kemstreifs und Organbildung bei Tubifex rivulorum Lam,” Zool. Jahrb. Abt. 2 45, 251–308 (1923).

    Google Scholar 

  45. A. Penners, “Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. I. Die Duplicitas cruciata und organbildende Keimbezirke,” Arch. Mikrosk. Anat. 102, 51–100 (1924).

    Google Scholar 

  46. A. Penners, “Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. II. Die Entwicklung teilweise abgetöteter Keime,” Z. Wiss. Zool. 127, 1–140 (1926).

    Google Scholar 

  47. T. L. Poddubnaya, “About parthenogenesis in Tubificidae (Oligochaeta),” Tr. Inst. Biol. Vnutr. Vod. AN SSSR 44/47, 3–13 (1980).

    Google Scholar 

  48. U. Schöttler and G. Schroff, “Untersuchungen zum anaeroben Glykogenabbau bei Tubifex tubifex M.,” J. Comp. Physiol. B108, 243–254 (1976).

    Google Scholar 

  49. J. Seuss, T. Mustafa, and K. H. Hoffmann, “Anpassungen der Citratsyn-thetase von Tubifex spec, an eine fakultativ anaerobe Lebensweise,” in: Verh. Dtsch. Zool. Ges. 73 Jahres versammle Berlin, Stuttgart-New York (1980).

    Google Scholar 

  50. T. Shimizu, “Occurrence of microfilaments in the Tubifex egg undergoing the deformation movement,” J. Fac. Sci. Hokkaido Univ., Ser. VI 20, 1 (1975).

    Google Scholar 

  51. T. Shimizu, “The fine structure of the Tubifex egg before and after fertilization,” J. Fac. Sci. Hokkaido Univ., Ser. VI 20, 253–263 (1976).

    Google Scholar 

  52. T. Shimizu, “The staining property of cortical cytoplasm and the appearance of pole plasm in Tubifex egg,” Dobutsugaku Zasshi (Zool. Mag.) 85, 32–39 (1976).

    Google Scholar 

  53. T. Shimizu, “Mode of microfilament arrangement in normal and cytochalasin-treated eggs of Tubifex (Annelida, Oligochaeta),” Acta Embryol. Exp. 1, 59–74 (1978).

    Google Scholar 

  54. T. Shimizu, “Deformation movement induced by divalent ionophore A 23187 in the Tubifex egg,” Dev. Growth Differ. 20, 27–33 (1978).

    Article  CAS  Google Scholar 

  55. T. Shimizu, “Surface contractile activity of the Tubifex egg: its relationship to the meiotic apparatus functions,” J. Exp. Zool. 208, 361–377 (1979).

    Article  Google Scholar 

  56. T. Shimizu, “Cyclic changes in shape of a non-nucleate egg fragment of Tubifex (Annelida, Oligochaeta),” Dev. Growth Differ. 23, 101–109 (1981).

    Article  Google Scholar 

  57. T. Shimizu, “Cortical differentiation of the animal pole during maturation division in fertilized eggs of Tubifex (Annelida, Oligochaeta). I. Meiotic apparatus formation,” Dev. Biol. 85, 65–76 (1981).

    Article  PubMed  CAS  Google Scholar 

  58. T. Shimizu, “Cortical differentiation of the animal pole during maturation division in fertilized eggs of Tubifex (Annelida, Oligochaeta). II. Polar body formation,” Dev. Biol. 85, 77–88 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. T. Shimizu, “Ooplasmic segregation in the Tubifex egg: mode of pole plasm accumulation and possible involvement of microfilaments,” Wilhelm Roux’s Arch. Dev. Biol. 191, 246–256 (1982).

    Article  Google Scholar 

  60. T. Shimizu, “Organization of actin filaments during polar body formation in eggs of Tubifex (Annelida, Oligochaeta),” Eur. J. Cell Biol. 30, 74–82 (1983).

    PubMed  CAS  Google Scholar 

  61. T. Shimizu, “Dynamics of the actin microfilament system in the Tubifex egg during ooplasmic segregation,” Dev. Biol. 106, 414–426 (1984).

    Article  PubMed  CAS  Google Scholar 

  62. T. Shimizu, “Movements of mitochondria associated with isolated egg cortex,” Dev. Growth Differ. 27, 149–154 (1985).

    Article  Google Scholar 

  63. T. Shimizu, “Bipolar segregation of mitochondria, actin network, and surface in the Tubifex egg: role of cortical polarity,” Dev. Biol. 116, 241–251 (1986).

    Article  Google Scholar 

  64. F. Stéphan-Dubois and G. Biver, “Action de l’actinomycine D sur la régénération caudale de Tubifex tubifex (Annélide, Oligochète),” C. R. Soc. Biol. 168, 1068–1071 (1974).

    Google Scholar 

  65. F. Stéphan-Dubois and S. Schwartz, “Cycle annuel de l’activité neu– rosécrétrice et de l’activité sexuelle chez l’Annélide Tubifex tubifex,” C. R. Soc. Biol. 172, 697–700 (1978).

    Google Scholar 

  66. P. Stockei, A. Mayer, and R. Keller, “X-ray small-angle-scattering investigation of a giant respiratory protein: haemoglobin of Tubifex tubifex,” Eur. J. Biochem. 37, 193–200 (1973).

    Article  Google Scholar 

  67. C. Suzutani-Shiota, “Ultrastructural study on cocoon formation in the fresh-water oligochaete, Tubifex hattai,” J. Morphol. 164, 25–38 (1980).

    Article  Google Scholar 

  68. P. G. Svetlov, “Early developmental stages of Rhynchelmis limosella Hoffm.,” Izv. Biol. Nauchn.-Issled. Inst. Permsk: Univ. 2, 141–152 (1923).

    Google Scholar 

  69. P. G. Svetlov, “Embryonic development of Naididae fam.,” Izv. Biol. Nauchn.-Issled. Inst. Permsk. Univ. 4, 359–372 (1926).

    Google Scholar 

  70. R. Weber, “Zur Verteilung der Mitochondrien in frühen Entwicklunsstadien von Tubifex,” Rev. Suisse Zool. 63, 277 (1956).

    Google Scholar 

  71. R. Weber, “Uber die submikroskopische Organization und die biochemische Kennzeichnung embryonaler Entwicklungsstadien von Tubifex,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 150, 542–580 (1958).

    Article  Google Scholar 

  72. R. Weber. “The electronmicroscopic study of embryonic differentiation,” in: The Interpretation of Ultrastructure, R. J. C. Harris (ed.), Academic Press, New York-London (1965).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Consultants Bureau, New York

About this chapter

Cite this chapter

Meshcheryakov, V.N. (1990). The Sludgeworm Tubifex . In: Dettlaff, T.A., Vassetzky, S.G. (eds) Animal Species for Developmental Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0503-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0503-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7839-9

  • Online ISBN: 978-1-4613-0503-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics