Bioremediation and Waste Management

  • Richard J. F. Bewley
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 63)


The treatment of waste materials, which arise from man’s activities, by use of microorganisms has a long and well-documented history. Interest in the application of the technologies involved in such processes to problems of hazardous waste has increased in recent years with the growing legislative and economic pressures to develop destructive and cost-effective solutions for environmental clean-up.


Lignin Hydrocarbon Chlorinate Alkane Streptomyces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M. (1977). “Introduction to Soil Microbiology”. J. Wiley & Sons, New York.Google Scholar
  2. Alexander, M. (1985). Biodegradation of organic chemicals. Environ. Sci. Technol. 18, 106–111.CrossRefGoogle Scholar
  3. Atlas, R.M. (1977). Stimulated petroleum biodegradation. Crit. Rev. Microbiol. 5, 371–386.CrossRefGoogle Scholar
  4. Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: on environmental perspective. Microbiol. Rev. 45, 180–209.PubMedGoogle Scholar
  5. Atlas, R.M. and Bartha, R. (1973a). Inhibition by fatty acids of the biodegradation of petroleum. Antonie van Leeuwenhoek J. Microbiol. Serol. 39, 257–271.CrossRefGoogle Scholar
  6. Atlas, R.M. and Bartha, R. (1973b). Stimulated biodegradation of oil slicks using oleophilic fertilisers. Environ. Sci. Technol. 7, 538–541.CrossRefGoogle Scholar
  7. Balba, M.T. and Bewley, R.J.F. (1991). Organic Contaminants and Microorganisms, in “Organic Contaminants in the Environment”. (Jones, K. C., Ed.) pp 237–274. Elsevier, Barking, U.K.Google Scholar
  8. Bartha, R. (1986). Biotechnology of petroleum pollutant biodegradation. Microb. Ecol. 12, 155–172.CrossRefGoogle Scholar
  9. Bewley, R.J.F. (1986). A microbiological strategy for the decontamination of polluted soil, in “Contaminated Soil” (Assink, J.W. and van den Brink, W.J., Ed.) pp 759–768. Martinus Nijhoff, Dordrecht, The Netherlands.Google Scholar
  10. Bewley, R., Ellis, B., Theile, P., Viney, I., Rees, J. (1989). Microbial Clean-Up of Contaminated Soil. Chem. Ind. (London),778–783.Google Scholar
  11. Bewley, R.J.F., Ellis, B., Rees, J.F. (1990). Development of a microbiological treatment for restoration of oil contaminated soil. Land Deg. & Rehabil. 2, 1–11.CrossRefGoogle Scholar
  12. Bewley, R.J.F., Sleat, R., Rees, J.F. (1991). Waste treatment and pollution clean-up, in “Biotechnology/The Science and the Business”. (Moses, V. and Cape R.E., Ed.) pp 507–519. Harwood Academic Publishers, London.Google Scholar
  13. Bossert, I. and Bartha, R. (1984). The fate of petroleum in soil ecosystems, in “Petroleum Microbiology” (Atlas, R.M., Ed.) pp 435–473. Macmillan, New York.Google Scholar
  14. Bumpus, J.A. and Aust, S.D. (1987). Biodegradation of DDT [1,1,1-trichloro-2,2-Bis (4-chlorophenyl) Ethene] by the White Rot Fungus Phanerochaete chrysosporium Appl. Environ. Microbiol. 53, 2001–2008.Google Scholar
  15. Bumpus, J.A., Tien, M., Wright, D. and Aust S.D. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434–1436.PubMedCrossRefGoogle Scholar
  16. Colwell, R.R. and Walker, J.D. (1977). Ecological aspects of microbial degradation of petroleum in the marine environment. Crit. Rev. Microbiol. 5, 423–445.CrossRefGoogle Scholar
  17. Chakrabarti, T., Subrahmanyam, P.V.R. and Sundaresan, B.B. (1989). Biodegradation of recalcitrant industrial wastes, in “Biotreatment systems Vol II” (Wise, D.L., Ed.) pp 171–234. CRC Press, Inc., Boca Raton, Fla.Google Scholar
  18. Dean-Ross D. (1987). Biodegradation of Toxic Wastes in Soil. ASM News 53, 490–492.Google Scholar
  19. Department of the Environment (1990). Environmental Protection Act 1990 Chapter 43. HMSO, London.Google Scholar
  20. Dragun, J. (1988). “The Soil Chemistry of Hazardous Materials”, pp 325–445. HMCRI, Silver Spring MD, USA.Google Scholar
  21. Dupont, R.R., Sims, R.C., Sims J.L. and Sorensen, D.L. (1989). In-Situ biological treatment of hazardous waste-contaminated soils, in “Biotreatment Systems Volume II” (Wise D.L., Ed.) pp 23–94. CRC Press Inc., Boca Raton, Fla.Google Scholar
  22. Eaton, D.C. (1985). Mineralisation of polychlorinated biphenyls by Phanerochaete chrysosporium a ligninolytic fungus. Enzyme Microb. Technol. 7, 194–196.Google Scholar
  23. Efroymson, R.A. and Alexander, M. (1991). Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl. Environ. Microbiol. 57, 1441–1447.PubMedGoogle Scholar
  24. Ellis B., Balba, M.T. and Theile, P. (1990). Bioremediation of oil contaminated land. Environ. Technol. 11, 443–455.CrossRefGoogle Scholar
  25. Ellis, B. and Bewley R.J.F. (1990). Biotreatment of contaminated land, in “Microbiology in Civil Engineering”(Howsam, P., Ed.) pp 231–240. E. & F.N. Spon, London.Google Scholar
  26. Evans, W.C., Fernley, H.N. and Griffiths, E. (1965). Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochem J. 95, 819–831PubMedGoogle Scholar
  27. Focht, D.D. and Brunner, W. (1985). Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Mcrobiol. 50, 1058–1063.Google Scholar
  28. Gibson, D.T., Jerina, D.M., Yagi H. and Yeh, H.J.C. (1975). Oxidation of the carcinogens benzo(a)pyrene and benzo(a)anthracene to dihydrodiols by a bacterium. Science 189, 295–297.PubMedCrossRefGoogle Scholar
  29. Goldstein, R.M., Mallory, L.M. and Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ.Microbiol. 50,977–983PubMedGoogle Scholar
  30. Hardman, D. (1991). Microbial pollution control: a technology in its infancy. Chem. Ind. (London), 244–246.Google Scholar
  31. Heitkamp, M., Freeman, J.P., Miller, D.W. and Cerniglia, C.E. (1988). Pyrene degradation by a Mycobacterium sp: Identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54, 2556–2565.PubMedGoogle Scholar
  32. Herbes, S.E. and Schwall, L.R. (1978). Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl. Environ. Microbiol. 35, 306–316.PubMedGoogle Scholar
  33. Jain, R.K., Sayler, G.S., Wilson, J.T., Houston, L. and Pacia, D. (1987). Maintenance and stability of introduced genotypes in groundwater aquifer material. Appl. Environ. Microbiol. 53, 996–1002PubMedGoogle Scholar
  34. Keck, J., Sims, R.C., Coover, M., Park, K. and Symons, B. (1989). Evidence for co-oxidation of polynuclear aromatic hydrocarbons in soil. Wat. Res. 23, 2467–1476.CrossRefGoogle Scholar
  35. Kolenc, R.J., Inniss, W.E., Glick, B.R., Robinson, C.W. and Mayfield, C.I. (1988). Transfer and expression of mesophilic plasmid-remediated degradative capacity in a psychotrophic bacterium. Appl. Environ. Microbiol. 54, 638–641.PubMedGoogle Scholar
  36. Leahy M.C., Findlay, M. and Fogel, S. (1989). Biodegradation of chlorinated aliphatics by a methanotrophic consortium in a biological reactor, in “Biotreatment — The Use of Microorganisms in the Treatment of Hazardous Materials and Hazardous Wastes”, Proceedings of the 2nd National Conference, pp 3–9 HMCRI, Washington, DC.Google Scholar
  37. Lee, B., Pometto, A.L., Fratzke, A., Bailey, T.B. Jr. (1991). Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species.Google Scholar
  38. McClure, N.C., Weightman, A.J. and Fry, J.C. (1989). Survival of Pseudomonas putida UWCI containing cloned catabolic genes in a model activated sludge unit. Appl. Environ. Microbiol. 55, 2627–2634.PubMedGoogle Scholar
  39. McClure, N.C., Fry, J.C. and Weightman, A.J. (1991). Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated sludge unit. Appl. Environ. Microbiol. 57, 366–373.PubMedGoogle Scholar
  40. McDermott, J.B., Unterman, R., Brennan, M.J., Brocks, R.E., Mobley, D.P., Schwartz, C.C. and Dietrich, D.K. (1989). Two strategies for PCB soil remediation:biodegradation and surfactant extraction. Environ. Prog. 8, 46–51.CrossRefGoogle Scholar
  41. Mileski, G.J., Bumpus, J.A., Jurek, M.A. and Aust, S.D. (1988). Biodegradation of Pentachlorophenols by the White Rot fungus Phanerochoraete chrysosporium. Appl. Environ. Microbiol. 54, 2885–2889.PubMedGoogle Scholar
  42. Olivieri, R., Bacchin, P., Robertiello, A., Oddo, N., Degen, L. and Tonolo, A. (1976). Microbial degradation of oil spills enhanced by a slow-release fertiliser. Appl. Environ. Microbiol. 31, 629–634.PubMedGoogle Scholar
  43. Payne, G.F., Coppella, S.J. and DelaCruz, N. (1989). Genetic engineering approach to treating organophosphate wastes, in “Biotreatment — the use of Microorganisms in the Treatment of Hazardous Materials and Hazardous Wastes”, proceedings, of the 2nd National Conference, pp 129–133. HMCRI, Washington, DC.Google Scholar
  44. Piotrowski, M.R. (1991). Bioremediaton. Hazmat World, 4, 47–49.Google Scholar
  45. Quensen, J.F., Boyd, S.A. and Tiedje, J.M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56, 2360–2369.PubMedGoogle Scholar
  46. Sayler, G. and Day, S.M. (1991). Bioremediation. Hazmat World 4, 51–53.Google Scholar
  47. Short, K.A., Doyle, J.D., King, R.J., Seidler, R.J., Stotzky, G. and Olsen, R.H. (1991). Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-medicated ecological processes in soil. Appl. Environ. Microbiol. 57,412–418..PubMedGoogle Scholar
  48. Sims, R.C. and Overcash, M.R. (1983). Fate of polynuclear aromatic compounds (PNA’s) in soil-plant systems. Res. Rev. 88, 1–67.Google Scholar
  49. Sveum, P. and Ladousse, A. (1989). Biodegradation of oil in the Arctic:Enhancement by Oil Soluble Fertilizer Applications in “Proceedings of 1989 Oil Spill Conference”, pp 439–446, American Petroleum Institute, Washington DC.Google Scholar
  50. Swindoll, C.M., Aelion, C.M. and Pfaender, F.K. (1988). Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54, 212–217.PubMedGoogle Scholar
  51. Thakker, D.R., Yagi, H., Levin, W., Wood, A.W., Cooney, A.H. and Jerina, D.M. (1985). Polycyclic aromatic hydrocarbons:metabolic activation to ultimate carcinogens, in “Bioactivation of Foreign Compounds” (Anders, M.W., Ed.), pp 177–192. Academic Press, Inc., New York.Google Scholar
  52. Viney, I. and Bewley, R.J.F. (1990). Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Arch. Environ. Contam. Toxicol. 19, 789–796.PubMedCrossRefGoogle Scholar
  53. Walker, J.D., Colwell, R.R. and Petrakis, L. (1976). Biodegradation rates of components of petroleum. Can. J. Microbial. 22, 1209–1213.CrossRefGoogle Scholar
  54. Wilson, J.T. and Wilson, B.H. (1987). Biodegradation of halogenated aliphatic hydrocarbons, United States Patent Number 4713343.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Richard J. F. Bewley
    • 1
  1. 1.Dames & Moore InternationalBlackfriars HouseManchesterUK

Personalised recommendations