Glutamate-Dopamine Balance in the Striatum: Pre- and Post-Synaptic Interactions

  • Béatrice Lannes
  • Gabriel Micheletti
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)

Abstract

The striatum receives a major dopaminergic input, the nigro-striatal pathway originating from the substantia nigra pars compacta (SNc) (Dahlström and Fuxe, 1964; Andén et al, 1966). It receives also a massive excitatory input originating from the cortex and the thalamus (Grofova, 1979; Parent, 1990). Glutamate (GLU) is the candidate neurotransmitter of both of these pathways (Mc Geer et al, 1977; Reubi and Cuenod, 1979; Fonnum et al., 1981; Lapper and Bolam, 1992), although the neurotransmitter of the thalamo-striatal pathway is still controversial (Nieoullon et al., 1985; Nieoullon, 1986; Kilpatrick and Phillipson, 1986). During the past years, various experimental studies have established that the striatum is the site of reciprocal interactions between dopaminergic and glutamatergic neurotransmissions leading to the hypothesis that imbalance of these interactions may be involved in the pathogenesis of Parkinson’s disease (Nieoullon et al., 1982) or schizophrenia (Kim et al, 1980; Carlsson and Carlsson, 1990; Grace, 1991). Our purpose here is to review these interactions and their functional implications.

Keywords

Nicotine Neurol Ketamine Haloperidol Clozapine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, A.L., Zigmond, M.J., and Strieker, E.M., 1980, Compensatory increase in tyrosine hydroxylase activity in rat brain after intraventricular injection of 6-hydroxydopamine,Science 207:537–540.PubMedCrossRefGoogle Scholar
  2. Afifi, A.K., Bahuth, N.B., Kaelber, W.W., Mikhael, E., and Nassar, S., 1974, The cortico-nigral fibre tract. An experimental Fink-Heimer study in cats,J. Anat. 118:469–476.PubMedGoogle Scholar
  3. Andén, N.E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon,Acta Physiol Scand. 67:313–326.CrossRefGoogle Scholar
  4. Araneda, R., and Bustos, G., 1989, Modulation of dendritic release of dopamine by N-Methyl-D-Aspartate receptors in rat substantia nigra,J. Neurochem. 52:962–970.PubMedCrossRefGoogle Scholar
  5. Augustine, G.J., Charlton, M.P., and Smith, S.J., 1987, Calcium action in synaptic transmitter release,Ann. Rev. Neurosci. 10:633–693.PubMedCrossRefGoogle Scholar
  6. Barbeito, L., Chéramy, A., Godeheu, G., Desee, J.M., and Glowinski, J., 1990, Glutamate receptors of a quisqualate-kainate subtype are involved in the presynaptic regulation of dopamine release in the caudate nucleusin vivo, Eur. J. Neurosci. 2:304–311.CrossRefGoogle Scholar
  7. Barres, B.A., 1991, New roles for glia,J. Neurosci. 11:3685–3694.Google Scholar
  8. Bernardini, G.L., Speciale, S.G., German, D.C., 1990, Increased midbrain dopaminergic cell activity following 2’CH3-MPTP-induced dopaminergic cell loss: an in vitro electrophysiological study,Brain Res. 527:123–129.PubMedCrossRefGoogle Scholar
  9. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seiteiberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations,J. Neurol Sci. 20:415–455.PubMedCrossRefGoogle Scholar
  10. Bogerts, B., Hantsch, J., and Herzer, M., 1983, A morphometric study of the dopamine containing cell groups in the mesencephalon of normals, Parkinson patients and schizophrenics,Biol. Psychiat. 18:951–969.PubMedGoogle Scholar
  11. Bolam, P., and Smith, Y., 1991, Characterization of the synaptic inputs to dopaminergic neurons in the rat substantia nigra,in: “The Basal Ganglia III,” G. Bernardi, MB. Carpenter, G. Di Chiara, M. Morelli, and P. Stanzione, eds., Plenum Press, New York, pp. 119–131.Google Scholar
  12. Bouyer, J.J., Park, D.H., Joh, T.H., and Pickel, V.M., 1984, Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase–containing terminals in rat neostriatum,Brain Res. 302:267–275.PubMedCrossRefGoogle Scholar
  13. Bradford, H.F., Young, A.M.J., and Crowder, J.M., 1987, Continuous glutamate leakage from brain cells is balanced by compensatory high-affinity reuptake transport,Neurosci. Lett. 81:296–302.PubMedCrossRefGoogle Scholar
  14. Brown J.R., and Arbuthnott, G.W., 1983, The electrophysiology of dopamine (D2) receptors: a study of the actions of dopamine on corticostriatal transmission,Neuroscience 10:349–355.PubMedCrossRefGoogle Scholar
  15. Bunney, B.S., and Aghajanian, G.K., 1976, The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique,Brain Res. 117:423–435.PubMedCrossRefGoogle Scholar
  16. Bunney, B.S., and Grace, A.A., 1978, Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity,Life Sci. 23:1715–1728.PubMedCrossRefGoogle Scholar
  17. Carlsson, M., and Carlsson, A., 1990, Interactions between glutamatergic and monoaminergic systems within the basal ganglia—Implications for schizophrenia and Parkinson’s disease,Trends Neurosci. 13:272–276.PubMedCrossRefGoogle Scholar
  18. Carrozza, D.P., Ferraro, T.N., Golden, G.T., Reyes, P.F., and Hare, T.A., 1991, Partial characterization of kainic acid–induced striatal dopamine release using in vivo microdialysis,Brain Res. 543:69–76.PubMedCrossRefGoogle Scholar
  19. Carter, C.J., 1982, Topographical distribution of possible glutamatergic pathways from the frontal cortex to the striatum and substantia nigra in rats, Neuropharmacology 21:379–383.PubMedCrossRefGoogle Scholar
  20. Carter, C.J., L’Heureux, R., and Scatton, B., 1988, Differential control byN-Methyl-D-Aspartate and kainite of striatal dopamine release in vivo: a transstriatal dialysis study,J. Neurochem. 51:462–468.PubMedCrossRefGoogle Scholar
  21. Chabrol, H., Guell, A., Bes, A., and Moron, P., 1986, Cerebral blood flow in schizophrenic adolescents,Am. J. Psychiat. 143:130.PubMedGoogle Scholar
  22. Chéramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra,Nature 289:537–542.PubMedCrossRefGoogle Scholar
  23. Chéramy, A., Romo, R., Godeheu, G., Baruch, P., and Glowinski, J., 1986,In vivo presynaptic control of dopamine release in the cat caudate nucleus. II. Facilitatory or inhibitory influence of L-Glutamate,Neuroscience 19:1081–1090.Google Scholar
  24. Chergui, K., Charléty, P.J., Akaoka, H., Saunier, C.F., Brunet, J.-L., Buda, M., Svensson, T.H., and Chouvet, G., 1993, Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo, Eur.J. Neurosci; 5:137–144.PubMedCrossRefGoogle Scholar
  25. Chesselet, M.F., 1984, Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis,Neuroscience 12:347–375.PubMedCrossRefGoogle Scholar
  26. Chiodo, L.A., and Bunney, B.S., 1983, Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and AIO midbrain DA neurons,J. Neurosci. 3:1607–1619.PubMedGoogle Scholar
  27. Clow, D.W., and Jhamandas, K., 1989, Characterization of L-Glutamate action on the release of endogenous dopamine from the rat caudate–putamen,J. Pharm. Exp. Ther. 248:722–728.Google Scholar
  28. Costall, B., and Naylor, R.J., 1973, On the mode of action of apomorphine,Eur. J. Pharmacol. 21:350–361.PubMedCrossRefGoogle Scholar
  29. Creese, I., Burt, D.R., and Snyder, S.H., 1977, Dopamine receptor binding enhancement accompanies lesion–induced behavioral supersensitivity,Science 197:596–598.PubMedCrossRefGoogle Scholar
  30. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine–containing neurons in the central nervous system,Acta Physiol. Scand. Suppl., 232:1–55.Google Scholar
  31. Davies, J., 1990, NMDA receptors in synaptic pathways,in: “The NMDA Receptor,” J.C. Watkins, and G.L. Collingridge, eds., IRL Press, Oxford, pp. 77–91.Google Scholar
  32. Desce, J.M., Godeheu, G., Galli, T., Artaud, F., Chéramy, A., and Glowinski, J., 1992, L-Glutamate-evoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N-Methyl-D-Aspartate receptors,Neuroscience 47:333–339.PubMedCrossRefGoogle Scholar
  33. Ewing, A.G., Bigelow, J.C, and Wightman, R.M., 1983, Direct in vivo monitoring of dopamine released from two striatal compartments in the rat,Science 221:169–171.PubMedCrossRefGoogle Scholar
  34. Farkas, T., Wolf, A.P., Jaeger, J., Brodie, J.D., Christman, D.R., and Fowler, J.S., 1984, Regional brain glucose metabolism in chronic schizophrenia,Arch. gen. Psychiat. 41:293–300.PubMedGoogle Scholar
  35. Filloux, F., Dawson, T.M., and Wamsley, J.K., 1988, Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase,Brain Res. Bull. 20:447–459.PubMedCrossRefGoogle Scholar
  36. Fonnum, F.F., Storm-Mathisen, J., and Divac, I., 1981, Biochemical evidence for glutamate as the neurotransmitter in corticostriatal and corticothalamic fibres in rat brain,Neuroscience 6:863–873.PubMedCrossRefGoogle Scholar
  37. Fuxe, K., and Agnati, L.F., 1991, Two principal modes of electrochemical communication in the brain: volume versus wiring transmission, in: “Volume Transmission in the Brain,” K. Fuxe, and L.F. Agnati, eds., Raven Press, New York, pp. 1–9.Google Scholar
  38. Garau, L., Govoni, S., Stefanini, E., Trabucchi, M., and Spano, P.F., 1978, Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum,Life Sci. 23:1745–1750.PubMedCrossRefGoogle Scholar
  39. Garcia-Munoz, M., Young, S.J., and Groves, P.M., 1991, Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation,Brain Res. 551:195–206.PubMedCrossRefGoogle Scholar
  40. Gariano, R.F., and Groves, P.M., 1988, Burst induced firing in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices,Brain Res. 462:194–198.PubMedCrossRefGoogle Scholar
  41. Gerfen, C., Engber, T.M., Mahan, L.C., Süsel, Z., Chase, T.N., Monsma, F.J. and Sibley, D.R., 1990, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons,Science 250:1429–1432.PubMedCrossRefGoogle Scholar
  42. Giorguieff, M.F., Kemel, M.L., and Glowinski, J., 1977, Presynaptic effect of L-Glutamic acid on the release of dopamine in rat striatal slices,Neurosci. Lett. 6:73–77.PubMedCrossRefGoogle Scholar
  43. Glowinski, J., Barbeito, L., and Chéramy, A., 1991, Influence of cortico–striatal glutamatergic neurons on dopaminergic transmission in the striatum,in: “The Basal Ganglia III,”G. Bernardi, MB. Carpenter, G. Di Chiara, M. Morelli, and P. Stanzione, eds., Plenum Press, New York, pp. 347–355.Google Scholar
  44. Godukhin, O.V., Zharikova, A.D., and Budantsev, A.Y., 1984, Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostriatum,Neuroscience 12:377–383.PubMedCrossRefGoogle Scholar
  45. Gonon, F.G., and Buda, M.J., 1985, Regulation of dopamine release by impulse flow and by autoreceptors as studied byin vivovoltammetry in the rat striatum,Neuroscience 14:765–774.PubMedCrossRefGoogle Scholar
  46. Govoni, S., Olgiati, VR., Trabucchi, M., Garau, L., Stefanini, E., and Spano, PF., 1978, [3H]haloperidol and [3H]spiroperidol receptor binding after striatal injection of kainic acid,Neurosci. Lett. 8:207–210.PubMedCrossRefGoogle Scholar
  47. Grace, AA., 1991, Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia,Neuroscience 41:1–24.PubMedCrossRefGoogle Scholar
  48. Grigoriadis, D., and Seeman, P., 1985, Complete conversion of brain dopamine receptors from the high- to the low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide,J. Neurochem. 44:1925–1935.PubMedCrossRefGoogle Scholar
  49. Grofova, I ., 1979, Extrinsic connections of the neostriatum,in: “The Neostriatum,” I. Divac, and RG. Öberg, eds., Pergamon, Oxford, pp. 37–51.Google Scholar
  50. Groves, P.M., 1980, Synaptic endings and their postsynaptic targets in neostriatum: synaptic specialization revealed from analysis of serial sections,Proc. Natl. Acad. Sci. USA 77:6926–6929.PubMedCrossRefGoogle Scholar
  51. Hammond, C, Shibazaki, T., and Rouzaire-Dubois, B., 1983, Branched output neurons of the rat subthalamic nucleus: electrophysiological study of the synaptic effects on identified cells in the two main target nuclei, the entopeduncular nucleus and the substantia nigra,Neuroscience9: 511 – 520.PubMedCrossRefGoogle Scholar
  52. Hollerman, J.R., and Grace, A.A., 1990, The effects of dopamine–depleting brain lesions on the electrophysiological activity of rat substantia nigra dopamine neurons,Brain Res. 533:203–212.PubMedCrossRefGoogle Scholar
  53. Huang, Q., Zhou, D., Chase, K., Gusella, J.F., Aronin, N., and DiFiglia, M., 1992, Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus,Proc. Natl. Acad. Sci. USA 89:11988–11992.PubMedCrossRefGoogle Scholar
  54. Imperato, A., and Di Chiara, G., 1984, Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites,J. Neurosci. 4:966–977.PubMedGoogle Scholar
  55. Imperato, A., Honoré, T., and Jensen, L.H., 1990, Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely–moving rats,Brain Res. 530:223–228.PubMedCrossRefGoogle Scholar
  56. Jhamandas, K., and Marien, M„ 1987, Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue,Br. J. Pharmacol. 90:641–650.PubMedGoogle Scholar
  57. Johnson, K.M., and Jeng, Y.-J., 1991, Pharmacological evidence forN-methyl-D-aspartate receptors on nigrostriatal dopaminergic nerve terminals,Can. J. Physiol. Pharmacol. 69:1416–1421.PubMedCrossRefGoogle Scholar
  58. Joyce, J.N., and Marshall, J.F., 1987, Quantitative autoradiography of dopamine D2 sites in rat caudate–putamen: localization to intrinsic neurons and not to neocortical afferents,Neuroscience 20:773–795.PubMedCrossRefGoogle Scholar
  59. Kabuto, H., Yokoi, I., Mizukawa, K., and Mori, A., 1989, Effects of an N-methyl-D-Aspartate receptor agonist and its antagonist CPP on the levels of dopamine and serotonin metabolism in rat striatum collected in vivo by using a brain dialysis technique,Neurochem. Res. 14:1075–1080.PubMedCrossRefGoogle Scholar
  60. Katz, B., 1969, “The Release of Neural Transmitter Substances,” Liverpool University Press, Liverpool.Google Scholar
  61. Kebabian, J.W., and Calne, D.B., 1979, Multiple receptors for dopamine,Nature 277:93–96.PubMedCrossRefGoogle Scholar
  62. Keefe, K.A., Zigmond, M.J., and Abercrombie, E.D., 1992, Extracellular dopamine in striatum: influence of nerve impulse activity in medial forebrain bundle and local glutamatergic input,Neuroscience 47:325–332.PubMedCrossRefGoogle Scholar
  63. Kemp, J.M., and Powell, T.P.S., 1971, The site of termination of afferent fibers in the caudate nucleus,Phil. Trans. R. Soc.Lond. B. 262:403–412.CrossRefGoogle Scholar
  64. Kerkerian, L., and Nieoullon, A., 1988, Supersensitivity of presynaptic receptors involved in the dopaminergic control of striatal high affinity glutamate uptake after 6-hydroxydopamine lesion of nigrostriatal dopaminergic neurons,Exp. Brain Res. 62:424–430.Google Scholar
  65. Kerkerian, L, Nieoullon A., and Dusticier, N., 1983, Topographic changes in high–affinity glutamate uptake in the cat red nucleus, substantia nigra, thalamus, and caudate nucleus after lesions of sensorimotor cortical areas,Exp. Neurol. 81:598–612.PubMedCrossRefGoogle Scholar
  66. Kilpatrick, I.C., and Phillipson, O.T., 1986, On the transmitter chemistry of thalamostriatal fibres,Neurosci. Lett. 67:97–98.PubMedCrossRefGoogle Scholar
  67. Kim, J.S., Kornhuber, H.H., Schmid-Burgk, W., and Holzmiller, B., 1980, Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia,Neurosci. Lett. 20:379–382.PubMedCrossRefGoogle Scholar
  68. Kornhuber, J., Kim, J.S., Kornhuber, M.E., and Kornhuber, H.H., 1984, The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat,Brain Res. 322:124–126.PubMedCrossRefGoogle Scholar
  69. Kornhuber, J., and Kornhuber, M.E., 1983, Axo-axonic synapses in the rat striatum,Eur. Neurol. 22:433–436.PubMedCrossRefGoogle Scholar
  70. Kornhuber, J., and Kornhuber, M.E., 1986, Presynaptic dopaminergic modulation of cortical input to the striatum,Life Sci. 39:669–674.CrossRefGoogle Scholar
  71. Krebs, M.O., Desee, J.M., Kemel, M.L., Gauchy, C., Godeheu, G., Chéramy, A., and Glowinski, J., 1991, Glutamatergic control of dopamine release in the rat striatum: evidence for presynaptic N-Methyl-D-Aspartate receptors on dopaminergic nerve terminals,J. Neurochem. 56:81–85.PubMedCrossRefGoogle Scholar
  72. Kuhr, W.G., Ewing, A.G., Caudill, W.L., and Wightman, R.M., 1984, Monitoring the stimulated release of dopamine with in vivo voltammetry. I: characterization of the response observed in the caudate nucleus of the rat,J. Neurochem. 43:560–569.PubMedCrossRefGoogle Scholar
  73. Kuhr, W.G., Wightman, R.M., and Rebec, G.V., 1987, Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle,Brain Res. 418:122–128.PubMedCrossRefGoogle Scholar
  74. Lambert, J.D.C., and Jones, R.S.G., 1989, Activation ofN-methyl-D-aspartate receptors contributes to the EPSP at perforant path synapses in the rat dentate gyrus in vitro,Neurosci. Lett. 97:323–328.PubMedCrossRefGoogle Scholar
  75. Lannes, B., Micheletti, G., Warter, J.–M., Kempf, E., and Di Scala, G., 1991, Behavioural, pharmacological and biochemical effects of acute and chronic administration of ketamine in the rat,Neurosci. Lett. 128:177–181.PubMedCrossRefGoogle Scholar
  76. Lapper, S.R., and Bolam, J.P., 1992, Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the mi,Neuroscience 51:533–545.PubMedCrossRefGoogle Scholar
  77. Le Moine, C, Normand, E., Guitteny, A.F., Fouque, B., Teoule, R., and Bloch, B., 1990, Dopamine receptor gene expression by enkephalin neurons in rat forebrain,Proc. Natl. Acad. Sci. USA 87:230–234.PubMedCrossRefGoogle Scholar
  78. Le Moine, C, Normand, E., and Bloch, B., 1991, Phenotypical characterization of the rat striatal neurons expressing the Dl dopamine receptor gene,Proc. Natl. Acad. Sci. USA 88:4205–4209.PubMedCrossRefGoogle Scholar
  79. Leviel, V., Gobert, A., and Guibert, B., 1990, The glutamate-mediated release of dopamine in the rat striatum: further characterization of the dual excitatory-inhibitory function,Neuroscience 39:305–312.PubMedCrossRefGoogle Scholar
  80. Lindefors, N., and Ungerstedt, U., 1990, Bilateral regulation of glutamate tissue and extracellular levels in caudate–putamen by midbrain dopamine neurons,Neurosci. Lett. 115:248–252.PubMedCrossRefGoogle Scholar
  81. Lindstrom, L.H., 1985, Low HVA and normal 5-HIAA CSF levels in drug-free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history,Psychiat. Res. 14:265–273.CrossRefGoogle Scholar
  82. Lisovoski, F., Haby, C, Borrelli, E., Schleef, C, Revel, M.O., Hindelang, C, and Zwiller, J., 1992, Induction of D2 dopamine receptor mRNA synthesis in a 6-hydroxydopamine parkinsonian rat model,Brain Res. Bull. 28:697–701.PubMedCrossRefGoogle Scholar
  83. Lonart, G., and Zigmond, M.J., 1991, High glutamate concentrations evoke Ca++-independent dopamine release from striatal slices: a possible role of reverse dopamine transport,J. Pharm. Exp. Ther 256:1132–1138.Google Scholar
  84. Maidment, N.T., and Marsden, C.A., 1987, Repeated atypical neuroleptic administration: effects on central dopamine metabolism monitored byin vivovoltammetry,Eur. J. Pharmacol. 136:141–149.PubMedCrossRefGoogle Scholar
  85. Marien, M., Brein, J., and Jhamandas, K., 1983, Regional release of [3H]dopamine from rat brainin vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid,Can. J. Physiol. Pharmacol. 61:43–60.PubMedCrossRefGoogle Scholar
  86. Martin, D.L., 1992, Synthesis and release of neuroactive substances by glial cells, Glia 5:81–94.PubMedCrossRefGoogle Scholar
  87. Martinez-Fong, D., Rosales, MG., Gongora-Alfaro, JL., Hernandez, S., and Aceves, J., 1992, NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysis,Brain Res. 595:309–315.PubMedCrossRefGoogle Scholar
  88. Martres, M.P., Sokoloff, P., and Schwartz, J.C, 1984, Dopaminergic binding sites in rat striatal slices and action of guanyl nucleotides,Naunyn Schmiedeberg’s Arch. Pharmacol. 325:116–123.CrossRefGoogle Scholar
  89. Maura, G., Giardi, A., and Raiteri, M., 1988, Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals,J. Pharm. Exp. Ther. 247:680–684.Google Scholar
  90. May, L.J., Kühr, W.G., and Wightman, R.M., 1988, Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scanin vivovoltammetry,J. Neurochem. 51:1060–1069.PubMedCrossRefGoogle Scholar
  91. Mc Geer, P.L., Mc Geer, E.G., Scherer, V., and Singh, K., 1977, A glutamatergic corticostriatal path?,Brain Res. 128:369–373.CrossRefGoogle Scholar
  92. Mereu, G., Costa, E., Armstrong, D.M., and Vicini, S., 1991, Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices,J. Neurosci. 11:1359–1366.PubMedGoogle Scholar
  93. Micheletti, G., Lannes, B., Haby, C, Borrelli, E., Kempf, E., Warter, J.M., and Zwiller, J., 1992, Chronic administration of NMDA antagonists induces D2 receptor synthesis in rat striatum,Mol. Brain Res. 14:363–368.PubMedCrossRefGoogle Scholar
  94. Mitchell, P.R., and Doggett, N.S., 1980, Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs,Life Sci. 26:2073–2081.PubMedCrossRefGoogle Scholar
  95. Moghaddam, B., Gruen, R.J., Roth, R.H., Bunney, B.S., and Adams, R.A., 1990, Effect of L-glutamate on the release of striatal dopamine: in vivo dialysis and electrochemical studies,Brain Res. 518:55–60.PubMedCrossRefGoogle Scholar
  96. Mount, H., Quirion, R., Kohn-Alexander, J., and Boksa, P., 1990, Subtypes of excitatory amino acid receptors involved in the stimulation of [3H]dopamine release from cell cultures of rat ventral mesencephalon,Synapse 5:271–280.PubMedCrossRefGoogle Scholar
  97. Nedergaard, S., Hopkins, C., and Greenfield, S.A., 1988, Do nigro-striatal neurones possess a discrete dendritic modulatory mechanism? Electrophysiological evidence from the actions of amphetamine in brain slices,Exp. Brain Res. 69:444–448.PubMedCrossRefGoogle Scholar
  98. Nieoullon, A., 1986, Reply to the letter to the editor by Kilpatrick and Phillipson,Neurosci. Lett. 67:98–99.CrossRefGoogle Scholar
  99. Nieoullon, A., Chéramy, A., and Glowinski, J., 1977, Release of dopamine in vivo from cat substantia nigra,Nature 266:375–377.PubMedCrossRefGoogle Scholar
  100. Nieoullon, A., Chéramy, A., and Glowinski, J., 1978, Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat,Brain Res. 145:69–83.PubMedCrossRefGoogle Scholar
  101. Nieoullon, A., Kerkerian, L., and Dusticier, N., 1982, Inhibitory effects of dopamine on high affinity glutamate uptake from rat striatum,Life Sci. 30:1165–1172.PubMedCrossRefGoogle Scholar
  102. Nieoullon, A., Scarfone, E., Kerkerian, L., Errami, M., and Dusticier, N., 1985, Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of thalamostriatal neurons,Neurosci. Lett. 58:299–304.PubMedCrossRefGoogle Scholar
  103. Onn, S.-P., Berger, T.W., Strieker, E.M., and Zigmond, M.J., 1986, Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: histochemical and neurochemical analysis,Brain Res. 376:8–19.PubMedCrossRefGoogle Scholar
  104. Overton, P., and Clark, D., 1992, Iontophoretically administered drugs acting at the N-Methyl-D-Aspartate receptor modulate burst firing in A9 dopamine neurons in the rat,Synapse 10:131–140.PubMedCrossRefGoogle Scholar
  105. Parent, A., 1990, Extrinsic connections of the basal ganglia,Trends Neurosci. 13:254–258.PubMedCrossRefGoogle Scholar
  106. Pickel, V.M., Beckley, S.C., Joh, T.H., and Reis, DJ., 1981, Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum,Brain Res. 225:373–385.PubMedCrossRefGoogle Scholar
  107. Reubi, J.C., and Cuenod, M., 1979, Glutamate release in vitro from corticostriatal terminals, Brain Res. 176:185–188.PubMedCrossRefGoogle Scholar
  108. Rinvik, E., 1966, The cortico-nigral projection in the cat,J. Comp. Neurol. 126:241–254.PubMedCrossRefGoogle Scholar
  109. Roberts, P.J., and Anderson, S.D., 1979, Stimulatory effect of L-Glutamate and related amino acids on [3H] dopamine release from rat striatum: anin vitromodel for glutamate actions,J. Neurochem. 32:1539–1545.PubMedCrossRefGoogle Scholar
  110. Roberts, P.J., and Sharif, N.A., 1978, Effects of L-glutamate and related amino acids upon the release of [3H] dopamine from rat striatal slices,Brain Res. 157:391–395.PubMedCrossRefGoogle Scholar
  111. Robledo, P., and Féger, J., 1990, Excitatory influence of rat subthalamic nucleus to substantia nigra parsreticulata and the pallidal complex: electrophysiological data,Brain Res. 518:47–54.PubMedCrossRefGoogle Scholar
  112. Romo, R., Chéramy, A., Godeheu, G., and Glowinski, J., 1986, In vivo presynaptic control of dopamine release in the cat caudate nucleus -I. Opposite changes in neuronal activity and release evoked from thalamic motor nuclei,Neuroscience 19:1067–1079.PubMedCrossRefGoogle Scholar
  113. Rowlands, G.J., and Roberts, P.J., 1980, Activation of dopamine receptors inhibits calcium-dependent glutamate release from cortico-striatal terminals in vitro,Eur. J. Pharmacol. 62:241–242.PubMedCrossRefGoogle Scholar
  114. Rudolph, M.I., Arqueros, L., and Bustos, G., 1983, L-Glutamic acid, a neuromodulator of dopaminergic transmission in the rat corpus striatum,Neurochem. Intern. 5:479–486.CrossRefGoogle Scholar
  115. Rutherford, A., Garcia-Munoz, M., and Arbuthnott, G.W., 1988, An afterhyperpolarization recording in striatal cells “in vitro”: effect of dopamine administration,Exp. Brain Res. 71:399–405.PubMedCrossRefGoogle Scholar
  116. Sah, P., Hestrin, S., and Nicoli, R.A., 1989, Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons,Science 246:815–818.PubMedCrossRefGoogle Scholar
  117. Sands, S.B., and Barish, M.E., 1989, A quantitative description of excitatory amino acid neurotransmitter responses on cultured embryonic Xenopus spinal neurons,Brain Res. 502:375–386.PubMedCrossRefGoogle Scholar
  118. Scarnati, E., Proia, A., Campana, E., and Pacitti, C, 1986, A microiontophoretic study on the nature of the putative synaptic neurotransmitter involved in the pedonculopontine–substantia nigra pars compacta excitatory pathway of the rat,Exp. Brain Res. 62:470–478.PubMedCrossRefGoogle Scholar
  119. Schmidt, W.J., and Bubser, M., 1989, Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats,Pharmacol. Biochem. Behav. 32:621–623.PubMedCrossRefGoogle Scholar
  120. Schwarcz, R., Creese, I., Coyle, J.T., and Snyder, S.H., 1978, Dopamine receptors localised on cerebral cortical afferents to rat corpus striatum,Nature 271:766–768.PubMedCrossRefGoogle Scholar
  121. Silva, N.L., and Bunney, B.S., 1988, Intracellular studies of dopamine neurons in vitro: pacemakers modulated by dopamine,Eur. J. Pharmacol. 149:307–315.PubMedCrossRefGoogle Scholar
  122. Smith, A.D., and Bolam, J.P., 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones,Trends Neurosci. 13:259–265.PubMedCrossRefGoogle Scholar
  123. Smith, I.D., and Grace, A.A., 1992, Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity,Synapse 12:287–303.PubMedCrossRefGoogle Scholar
  124. Stachowiak, M.K., Keller Jr., R.W., Strieker, E.M., and Zigmond, M.J., 1987, Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage,J. Neurosci. 7:1648–1654.PubMedGoogle Scholar
  125. Suaud-Chagny M.F., Chergui, K., Chouvet, G., and Gonon, F., 1992, Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during localin vivoapplication of amino acids in the ventral tegmental area,Neuroscience 49:63–72.PubMedCrossRefGoogle Scholar
  126. Tallaksen-Greene, S.J., Wiley, R.G., and Albin, R.L., 1992, Localization of striatal excitatory amino acid binding site subtypes to striatonigral projection neurons,Brain Res. 594:165–170.PubMedCrossRefGoogle Scholar
  127. Theodorou, A., Reavill, C, Jenner, P., and Marsden, CD., 1981, Kainic acid lesions of striatum and decortication reduce specific [3H] sulpiride binding in rats, so D2 receptors exist postsynaptically on corticostriate afferents and striatal neurons,J. Pharm. Pharmacol. 33:439–444.PubMedCrossRefGoogle Scholar
  128. Trugman, JM., Geary II, W.A., and Wooten, GF., 1986, Localization of D2 dopaminergic receptors to intrinsic striatal neurons by quantitative autoradiography,Nature323:267–269.PubMedCrossRefGoogle Scholar
  129. Van den Pol, A.N., Smith, A.D., and Powell, J.F., 1985, GABA axons in synaptic contact with dopamine neurons in the substantia nigra: double immunocytochemistry with biotin-peroxidase and protein A-colloidal gold,Brain Res. 348:146–154.PubMedCrossRefGoogle Scholar
  130. Vizi, E.S., and Labos, E., 1991, Non-synaptic interactions at presynaptic level,Progr. Neurobiol. 37:145–161.CrossRefGoogle Scholar
  131. Wang, J.K.T., 1991, Presynaptic glutamate receptors modulate dopamine release from striatal synaptosomes,J. Neurochem. 57:819–822.PubMedCrossRefGoogle Scholar
  132. Wachtel, H., and Turski, L., 1990, Glutamate: a new target in schizophrenia?,Trends Pharmacol. Sci. 11:219–220.PubMedCrossRefGoogle Scholar
  133. Wedzony, K., Golembiowska, K., and Maj, J., 1991, A search for the effects of NMDA on the release of dopamine from the rat caudate nucleus,in: “Monitoring Molecules in Neuroscience,” H. Rollema, B.H.C. Westerink, and W.J. Drijfhout, eds., University Centre for Pharmacy, Groningen, pp. 321–324.Google Scholar
  134. Weinberger, D.R., Berman, K.F., and Zee, R.F., 1986, Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia,Arch, gen Psychiat. 43:114 #x2013;124.Google Scholar
  135. Weiner, D.M., and Brann, M.R., 1989, The distribution of a dopaminergic D2 receptor mRNA in rat brain,FEBS Lett. 253:207–213.PubMedCrossRefGoogle Scholar
  136. Westerink, B.H.C, Santiago, M., and De Vries, J.B., 1992, The release of dopamine from nerve terminals and dendrites of nigrostriatal neurons induced by excitatory amino acids in the conscious rat,Naunyn-Schmiedeberg’s Arch. Pharmacol.345: 523 – 529.Google Scholar
  137. White, F.J., and Wang, R.Y., 1983, Comparison of the effect of chronic haloperidol treatment on A9 and AIO dopamine neurons in the rat,Life Sci. 32:983–993.PubMedCrossRefGoogle Scholar
  138. Yamamoto, B.K., and Davy, S., 1992, Dopaminergic modulation of glutamate release in striatum as measured by microdialysis,J. Neurochem. 58:1736–1742.PubMedCrossRefGoogle Scholar
  139. Zigmond, M.J., and Stricker, E.M., 1972, Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats,Science 177:1211–1214.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Béatrice Lannes
    • 1
  • Gabriel Micheletti
    • 1
  1. 1.Faculté de MédecineInstitut de PhysiologieStrasbourgFrance

Personalised recommendations