Skip to main content

Long-Lasting Changes in Excitability of Corticostriatal Terminals Following Tetanic Stimulation

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

  • 134 Accesses

Abstract

The presence of presynaptic auto- and heteroreceptors located on striatal afferents (e.g. Kalsner and Westfall, 1990) provides a locus for feedback regulation of transmitter release and for presynaptic interaction between afferent projections. While axo-axonic contacts are extremely rare in the striatum (Kornhuber and Kornhuber, 1983) the close proximity of cortical glutamate (GLU), nigral dopamine (DA) and other afferent terminals as they form synapses on spiny neurons (Freund et al., 1984) provides the potential for presynaptic interactions resulting from the activation of presynaptic receptors by diffusion of transmitter from synaptic sites (Cuello, 1966; Fuxe and Agnati, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R.,and Routtenberg, A., 1985, Protein kinase C phosphorylates a 47Mr protein (Fl) directly related to synaptic plasticity, Brain Res. 334:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci. 9:357–381.

    Article  PubMed  CAS  Google Scholar 

  • Artola, A., Bröcher, S., and Singer, W., 1990, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex, Nature 347:69–72.

    Article  PubMed  CAS  Google Scholar 

  • Barrionuevo, G., Schottler, F., and Lynch, G., 1980, The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus, Life Sci. 27:2385–2391.

    Article  PubMed  CAS  Google Scholar 

  • Bindman, L.J., Murphy, K.P.S.J., and Pockett, S., 1988, Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain, J. Neurophysiol. 60(3):1053–1065.

    PubMed  CAS  Google Scholar 

  • Biziere, K., and Coyle, J.T., 1978, Influence of cortico-striatal afferents on striatal kainic acid neurotoxicity, Neurosci. Lett. 8:303–310.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, J., and Butters, N., 1986, The neuropsychology of Huntington’s disease, TINS. 9:118–120.

    Google Scholar 

  • Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B., and Bernardi, G., 1992a, Long-term synaptic depression in the striatum:Physiological and pharmacological characterization, J. Neuroscience 12:4224–4233.

    CAS  Google Scholar 

  • Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G., 1992b, Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels, Eur. J. Neurosci. 4:929–935.

    Article  PubMed  Google Scholar 

  • Castelluci, V.F., Kandel, E.R., Schwartz, J.H., Wilson, F.D., Nairn, A.C., and Greengard, P., 1980, Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase stimulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. U.SA. 77:7492–7496.

    Article  Google Scholar 

  • Chavez-Noriega, L., Patino, P., and Garcia-Munoz, M., 1986, Excitability changes induced in the striatal dopamine-containing terminals following frontal cortex stimulation, Brain Res. 379:300–306.

    Article  PubMed  CAS  Google Scholar 

  • Christofi, G., Novicky, A.V., and Bindman, L.J., 1991, The postsynaptic induction of long-term depression (LTD) of synaptic transmission in isolated rat hippocampal slices requires extracellular calcium, J. Physiol. (London)438:257 P.

    Google Scholar 

  • Cohen, N.J., Eichenbaum, H., De Acedo, H., and Corkin, S., 1985, Different memory systems underlying acquisition of procedural and declarative knowledge, Ann. N. Y. Acad. Sci. 444:54–71.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., Anson, J. and Surtees, L., 1983, Presynaptic kainate and N-methyl-D-aspartate receptors regulate excitatory amino acid release in the olfactory cortex, Brain Res. 265:157–159.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F., and Jaillard, D., 1991, Pairing of pre- and postsynaptic activities in cerebellar purkinje cells induces long-term changes in synaptic efficacy in vitro, J. Physiol. (London)432:123–141.

    CAS  Google Scholar 

  • Cuello, CA., 1966, Nonclassical neuronal communications, Frd. Proc. Fed. Soc. Exptl. Biol. 42:2912–2922.

    Google Scholar 

  • Divac, I., Öberg, G.E., 1992, Subcortical mechanisms in cognition, in: “Neuropsychological disorders associated with subcortical lesions,” G. Vallar, S. F. Cappa, C.-W. Wallesch, eds., Oxford University Press, Oxford, pp. 42–60.

    Google Scholar 

  • Dunwiddie, T., and Lynch, G., 1978, Long-term potentiation and depression of synaptic responses in the rat hippocampus:Localization and frequency dependency, J. Physiol. (London) 276:353–367.

    CAS  Google Scholar 

  • Earle, M.L., and Davies, J.A., 1991, The effect of methamphetamine on the release of glutamate from striatal slices, J. Neural Transm. 86:217–222.

    Article  CAS  Google Scholar 

  • Ebrahimi, A., Pochet, R., and Roger, M., 1992, Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat, Neurosci. Res. 14:39–60.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J.H., Loughlin, S.E., 1987, Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia, in: “Cerebral Cortex. Volume 6. Further aspects of cortical function, including hippocampus,” E. G. Jones, A. Peters eds., Plenum Press, New York, pp. 41–127.

    Google Scholar 

  • Ferkany, J.W., and Coyle, J.T., 1983, Kainic acid selectively stimulates the release of endogenous excitatory acidic amino acids, J. Pharmacol. Exp. Ther. 225:399–406.

    PubMed  CAS  Google Scholar 

  • Flaherty, A.W., Graybiel, A.M., 1992, Multiple stages of sensorimotor processing in the primate basal ganglia,Fourth triennial Meet. Intern. Basal Ganglia Soc. abstr.:29.

    Google Scholar 

  • Forsythe, I.D., and Clements, J.D., 1990, Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones, J. Physiol. (London) 429:1–16.

    CAS  Google Scholar 

  • Freund, T.F., Powell, J.F., and Smith, A.D., 1984, Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neurosci. 13:1189–1215.

    Article  CAS  Google Scholar 

  • Fuxe, K., and Agnati, L.F., 1991, “Volume Transmission in the Brain:Novel Mechanisms for Neural Transmission,” Raven Press, New York.

    Google Scholar 

  • Garcia-Munoz, M., Young, S.J., and Groves, P.M., 1991a, Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation, Brain Res. 551:195–206.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Munoz, M., Young, S.J., and Groves, P.M., 1991b, Terminal excitability of the corticostriatal pathway. II. Regulation by glutamate receptor stimulation, Brain Res. 551:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Munoz, M., Young, S.J., Groves, P.M., 1992a, Long-lasting changes in excitability of corticostriatal terminals following tetanic stimulation, Fourth triennial Meet. Intern. Basal Ganglia Soc. abst.:32.

    Google Scholar 

  • Garcia-Munoz, M., Young, S.J., and Groves, P.M., 1992b, Presynaptic long-term changes in excitability of the corticostriatal pathway, NeuroReport. 3:357–360.

    CAS  Google Scholar 

  • Gerfen, CR., 1992, The neostriatal mosaic:multiple levels of compartmental organization, TINS 15:133–139.

    PubMed  CAS  Google Scholar 

  • Giordano, M., and Prado-Alcalá, R.A., 1986, Retrograde amnesia induced by post-trial injection into caudate-putamen. Protective effect of the negative reinforcer, Pharmacol. Biochem. Behav. 24:905–909.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, S., and Selemon, L.D., 1987, Topography of corticostriatal projections in nonhuman primates and implications for functional panellation of the neostriatum, in: “Cerebral Cortex.Volume 6. Further aspects of cortical function, including hippocampus,” E. G. Jones and A. Peters, eds., Plenum Press, New York, pp. 447–466.

    Google Scholar 

  • Greenamyre, J.T., and Young, A.B., 1989, Synaptic localization of striatal NMDA, quisqualate and kainite receptors, Neurosci. Lett. 101:133–137.

    Article  PubMed  CAS  Google Scholar 

  • Grover, L.M., and Teyler, T.J., 1990, Two components of long-term potentiation induced by different patterns of afferent activation, Nature 347:477–479.

    Article  PubMed  CAS  Google Scholar 

  • Groves, P.M., 1983, A theory of functional organization of the neostriatum and the neostriatal control of voluntary movement, Brain Res. Rev. 5:109–132.

    Article  Google Scholar 

  • Groves, P.M., Fenster, G.A., Tepper, J.M., Nakamura, S., and Young, S.J., 1981, Changes in dopaminergic terminal excitability induced by amphetamine and haloperidol, Brain Res. 221:425–431.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, M.H., Garcia-Munoz, M., Arbuthnott, G.W.,1985, Separation of the motor consequences from other actions of unilateral 6-hydroxydopamine lesions in the nigrostriatal neurones of rat brain, Brain Res. 348:220–228.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J.C., and Crepel, F., 1992, Postsynaptic calcium is necessary for the induction of LTP and LTD of monosynaptic EPSPs in prefrontal neurons:An in vitro study in the rat, Hippocampus 10:173–175.

    CAS  Google Scholar 

  • Ito, M., 1989, Long-term depression, Ann. Rev. Neurosci. 12:85–102.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, S., and Rolls, E.T., 1990, Delay, dicriminatory, and modality specific neurons in striatum and pallidum during short-term memory tasks, Brain Res. 522:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Kalsner, S., and Westfall, T.C., 1990, Presynaptic receptors and the question of autoregulation of neurotransmitter release, Ann. N.Y. Acad. Sci. 604:652–655.

    Google Scholar 

  • Kauer, J.A., Malenka, R.C., and Nicoli, R.A., 1988, A persistent postsynaptic modification mediates long-term potentiation in the hippocampus, Neuron 1:911–917.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G.F., and Swerdlow, N.R., 1988, The functional output of the mesolimbic dopamine system, Ann. NY Acad. Sci. 537:216–227.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, J., and Kornhuber, M.E., 1983, Axo-axonic synapses in the rat striatum, Eur. J. Neurol. 22:433–436.

    Article  CAS  Google Scholar 

  • Levy, W.B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neurosci. 8:791–797.

    Article  CAS  Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305:719–721.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J.P., Richardson, J.S., and Teitelbaum, P., 1974, Nigrostriatal bundle damage and the lateral hypothalamic syndrome, J. Comp. Physiol. Psychol. 87:808–830.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D., Bustos, G.A., Bowe, M.A., Bray, S.D., and Nadler, J.V., 1991, Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area, J. Neurochem. 56:1647–1655.

    Article  PubMed  CAS  Google Scholar 

  • Martone, M., Butters, N., Payne, M., Becker, J.T., and Sax, D.S., 1984, Dissociations between skill learning and verbal recognition in amnesia and dementia, Arch. Neurol. 41:965–970.

    PubMed  CAS  Google Scholar 

  • Mereu, G., Westfall, T.C., and Wang, R.Y., 1985, Modulation of terminal excitability of tfiesolimbic dopaminergic neurons by d-amphetamine and haloperidol, Brain Res. 359:88–96.

    Article  PubMed  CAS  Google Scholar 

  • Mishkin, M., Appenseller, T.,1987, The anatomy of memory, Scientific American 256(6):80’89.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R.G.M., Kandel, E.R., and Squire, L.R., 1988, The neuroscience of learning and memory:cells, neural circuits and behaviour, TINS 11:125–127.

    Google Scholar 

  • Nichols, R.A., Sihra, T.S., Czernik, A.J., Nairn, A.C., and Greengard, P., 1990, Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes, Nature 343:647–651.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, J., Nadel, L., 1978, “The Hippocampus as a Cognitive Map,” Oxford University Press, New York.

    Google Scholar 

  • Packard, M.G., and McGaugh, J.L., 1992, Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks:further evidence for multiple memory systems, Behav. Neurosci. 106:439–446.

    Article  PubMed  CAS  Google Scholar 

  • Packard, M.G., and White, N.M., 1991, Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists, Behav. Neurosci. 105:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., Watson, C, 1982, “The Rat Brain in Stereotaxic Coordinates,” Academic Press, New York.

    Google Scholar 

  • Pisa, M., and Cyr, J., 1990, Regionally selective roles of the rat’s striatum in modality-specific discrimination learning and forelimb reaching, Behav. Brain Res. 37:281–292.

    Article  PubMed  CAS  Google Scholar 

  • Prado-Alcalá, R.A., Grinberg, J.Z., Arditti, L., Garcia-Munoz, M., Prieto, G.H., and Brust-Carmona, H., 1975, Learning deficits produced by chronic and reversible lesions of the corpus striatum in rats, Physiol. Behav. 15:283–287.

    Article  PubMed  Google Scholar 

  • Rolls, E.T., Thorpe, S.J., and Maddison, S.P., 1983, Responses of striatal neurons in the behaving monkey. 1. Head of the caudate nucleus, Behav. Brain Res. 7:179–210.

    Article  PubMed  CAS  Google Scholar 

  • Sabol, K.E., Neill, D.B., Wages, S.A., Church, W.H., and Justice, J.B., 1985, Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat, Brain Res. 335:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Sagar, H.J., Sullivan, E.V., Gabrieli, J.D.E., Corkin, S., and Growden, J.H., 1988, Temporal ordering and short-term memory deficits in Parkinson’s disease, Brain 111:525–539.

    Article  PubMed  Google Scholar 

  • Sastry, B.R., 1982, Presynaptic change associated with long-term potentiation in hippocampus, Life Sci. 30:2003–2008.

    Article  PubMed  CAS  Google Scholar 

  • Tepper, J.M., Groves, P.M., Young, S.J., 1985, The neuropharmacology of the autoinhibition of monoamine release, TIPS 6:251–256.

    CAS  Google Scholar 

  • Tyler, E.C., Lovinger, D.M., and Merritt, A., 1992, Short and long-term synaptic depression in neostriatum, Soc. Neurosci. Abst. 18:1351.

    Google Scholar 

  • Viaud, M.C., White, and N.M., 1989, Dissociation of visual and olfactory conditioning in the neostriatum of rats, Beh. Brain Res. 32:31–42.

    Article  CAS  Google Scholar 

  • Walsh, J.P., 1991, Long-term potentiation (LTP) of excitatory synaptic input to medium spiny neurons of the rat striatum, Soc. Neurosci. Abst. 17:852.

    Google Scholar 

  • Whishaw, I.Q., Mittleman, G., Bunch, S.T., and Dunnet, S.B., 1987, Impairments in the acquisition,retention, and selection of spatial navigation strategies after medial caudate-putamen lesions in rats, Behav. Brain Res. 24:125–138.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.J., 1987, Morphology and synaptic connections of crossed corticostriatal neurons in the rat, J. Comp. Neurol. 263:567–580.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.R., and Mogenson, G.J., 1986, Dopamine enhances terminal excitability of hippocampal-accumbens neurons via D2 receptor:role of dopamine in presynaptic inhibition, J. Neurosci. 6:2470–2478.

    PubMed  CAS  Google Scholar 

  • Zucker, R.S., and Lara-Estrella, L.O., 1983, Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions, J. Gen. Physiol. 81:355–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Garcia-Munoz, M., Young, S.J., Patino, P., Groves, P.M. (1994). Long-Lasting Changes in Excitability of Corticostriatal Terminals Following Tetanic Stimulation. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics