Nitric Oxide: A Novel Intercellular Messenger in the Striatum

  • Piers C. Emson
  • Rosalinda Guevara Guzman
  • Rosa Señaris
  • Jiro Kishimoto
  • Weiming Xu
  • Liu Lizhi
  • Paula Norris
  • Keith M. Kendrick
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)

Abstract

The free radical gas nitric oxide (NO) has recently been proposed as a messenger, or novel type of neurotransmitter in the brain (Bredt et al., 1991; Snyder and Bredt, 1992). The initial evidence for a role for NO in the central nervous system came when Garthwaite et al (1988) showed that cerebellar neurones would synthesize NO in response to the excitatory neurotransmitter glutamate, an observation confirmed by Bredt and Snyder (1989) amongst others. Subsequent work by Bredt and Snyder (1990) characterized the enzyme responsible for nitric oxide production, nitric oxide synthase (NOS) from rat brain and they cloned and isolated NOS (Bredt et al., 1991). The cloning and isolation of brain NOS revealed that the enzyme was structurally related only to cytochrome P450-oxido-reductase (CP-450 OR) which like NOS has an electron-transferring/accepting carboxy-terminal sequence (Bredt et al., 1991). The ability of NOS to reduce the dye nitro-blue tetrazolium accounting for a significant amount of brain diaphorase activity and diaphorase staining reflects NOS containing neurones (Figure 1) (Hope et al., 1991). We have confirmed these observations using in situ hybridization with antisense probes for NOS and NOS specific antibodies which visualize the same population of neurones in the brain and striatum (Figure 1).

Keywords

Dopamine Glutathione Syringe Polypeptide Half Life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariano, M.A., and Matus, A.I., 1981, Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum, J. Cell Biol. 91:287–292.PubMedCrossRefGoogle Scholar
  2. Ariano, M.A., Lewicki, J.A., Branswein, H.J., and Murad, F., 1982, Immunohistochemical localization of guanylate cyclase within neurons of rat brain, Proc. Natl. Acad. Sci. USA 79:1316–1320.PubMedCrossRefGoogle Scholar
  3. Ariano, M.A., 1983, Distribution of components of the guanosine 3’,5’-phosphate system in rat caudate-putamen, Neurosci. 10:707–723.CrossRefGoogle Scholar
  4. Ariano, M.A., 1984, Rat striatal cyclic nucleotide-reactive cells and acetylcholinesterase reactive interneurons are separate populations, Brain Res. 296:160–163.PubMedCrossRefGoogle Scholar
  5. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature 321:168–171.PubMedCrossRefGoogle Scholar
  6. Beal, M.F., Kowall, N.W., Swartz, K.J., Ferrante, R.J., and Martin, J.B., 1988, Systemic approaches to modifying quinolinic acid striatal lesions in rats, J. Neurosci. 8:3901–3908.PubMedGoogle Scholar
  7. Bredt, D.S., and Snyder, S.H., 1989, Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum, Proc. Natl. Acad. Sci. USA 86:9030–9033.PubMedCrossRefGoogle Scholar
  8. Bredt, D.S., and Snyder, S.H., 1990, Isolation of nitric oxide synthase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. USA 87:682–685.PubMedCrossRefGoogle Scholar
  9. Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C.L., Reed, R.R., and Snyder, S.H., 1991, Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase, Nature 351:714–719.PubMedCrossRefGoogle Scholar
  10. Dawbarn, D., DeQuit, M.E., and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res. 340:251–261.PubMedCrossRefGoogle Scholar
  11. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, Jr. E.P., Bird, E.D., and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science 230:561–563.PubMedCrossRefGoogle Scholar
  12. Garthwaite, J., Charles, S.L., and Chess-Williams, R., 1988, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain, Nature 336:385–388.PubMedCrossRefGoogle Scholar
  13. Hope, B.T., Michael, G.J., Knigge, K.M., and Vincent, S.R., 1991, Neuronal NADPH-diaphorase is a nitric oxide synthase, Proc. Natl. Acad. Sci. USA 88:2811–2814.PubMedCrossRefGoogle Scholar
  14. Kishimoto, J., Spurr, N., Emson, P.C., and Xu, W., 1992, Localization of brain nitric oxide synthase to human chromosome 12, Genomics 14:802–804.PubMedCrossRefGoogle Scholar
  15. Knowles, R.G., and Moncada, S., 1992, Nitric oxide as a signal in blood vessels, TINS17:399 402.Google Scholar
  16. Kowall, N.W., Ferrante, R.J., and Martin, J.B., 1987, Patterns of cell loss in Huntington’s disease, Trends Neurosci. 10:24–29.CrossRefGoogle Scholar
  17. Manzoni, O., Prezeau, L., Marin, P., Deshager, S., Bockaert, J., and Fagni, L., 1992, Nitric oxide-induced blockade of NMDA receptors, Neuron 8:653–662.PubMedCrossRefGoogle Scholar
  18. Matsuoka, I., Giuili, G., Poyard, M., Stengel, D., Parma, J., Guellaen, G., and Hanoune, J., 1992, Localization of adenylyl and guanylyl cyclase in rat brain by in situhybridization:comparison with calmodulin mRNA distribution, J. Neurosci. 12:3350–3360.PubMedGoogle Scholar
  19. Nakajima, K., Harada, K., Ebina, Y., Yoshimura, T., Ito, H., Ban, T., and Shingai, R., 1993, Relationship between resting cytosolic Ca2+ and responses induced by N-methyl-D-aspartate in hippocampal neurons, Brain Res. 603:321–323.PubMedCrossRefGoogle Scholar
  20. Staines, W.A., and Hincke, M.T.C., 1991, Substantial alterations in neurochemical and metabolic indices in select basal ganglia neurons follow lesions of globus pallidus neurons in rats, Soc. Neurosci. Abst. 17 (1):456.Google Scholar
  21. Stoof, J.C., Drukarch, B., De Boer, P., Westerink, B.H.C., and Groenewegen, H.J., 1992, Regulation of the activity of striatal cholinergic neurons by dopamine, Neurosci. 47:755–770.CrossRefGoogle Scholar
  22. Snyder, S.H., and Bredt, D.S., 1991, Nitric oxide as a neuronal messenger, Trends Pharmacol. Sciences 12:125–128.CrossRefGoogle Scholar
  23. Snyder, S.H., Bredt, D.S., 1992, Biological roles of nitric oxide, Scientific American May:28–35.Google Scholar
  24. Takagi, H., Somogyi, P., Somogyi, J., and Smith, A.D., 1983, Fine structural studies on a type of somatostatin-immunoreactive neuron and its synaptic connections in the rat neostriatum:a correlated light and electron microscopic study, J. Comp. Neurol. 214:1–16.PubMedCrossRefGoogle Scholar
  25. Thomas, E., and Pearse, A.G.E., 1964, The solitary active cells, Histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction, Acta Neuropathol. 3:238–249.PubMedCrossRefGoogle Scholar
  26. Vincent, S.R., and Johansson, O., 1983, Striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity:a light and electron microscopic study, J. Comp. Neurol. 217:264–270.PubMedCrossRefGoogle Scholar
  27. Vincent, S.R., Johansson, O., Hökfelt, T., Skirboll, L., Elde, R.P., Terenius, L., Kimmel, J., and Goldstein, M., 1983, NADPH-diaphorase:a selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities, J. Comp. Neurol. 217:252–263.PubMedCrossRefGoogle Scholar
  28. Wilson, C.J., 1990, Basal ganglia, in: “The Synaptic Organisation of the Brain,” G.M. Shepherd, ed., Oxford University Press, Oxford, pp. 279–317.Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Piers C. Emson
    • 1
  • Rosalinda Guevara Guzman
    • 1
  • Rosa Señaris
    • 1
  • Jiro Kishimoto
    • 1
  • Weiming Xu
    • 1
  • Liu Lizhi
    • 1
  • Paula Norris
    • 1
  • Keith M. Kendrick
    • 1
  1. 1.MRC — Molecular Neuroscience Group and Department of Neurobiology AFRCBabraham InstituteCambridgeUK

Personalised recommendations