Advertisement

Degradation and Reliability

  • Govind P. Agrawal
  • Niloy K. Dutta

Abstract

The performance of semiconductor lasers can degrade during their operation. This degradation is usually characterized by an increase in the threshold current that is often accompanied by a decrease in the external differential quantum efficiency. The dominant mechanism responsible for this degradation is determined by one or several of the fabrication processes including epitaxy, device processing, and bonding. In addition, the degradation rate of lasers processed from a given wafer depends on the operating conditions, namely, the operating temperature and injection current. Although many of the degradation mechanisms are not fully understood, an extensive amount of empirical observations exists in the literature. These observations have allowed the fabrication of InGaAsP laser diodes with an extrapolated median lifetime in excess of 25 years1 at an operating temperature of 10°C.

Keywords

Semiconductor Laser Threshold Current Reliability Assurance EBIC Signal Dark Line Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nash, F. R., W. J. Sundburg, R. L. Hartman, J. R. Pawlik, D. A. Ackerman, N. K. Dutta, and R. W. Dixon. AT&T Tech. J. 64, 809 (1985).Google Scholar
  2. 2.
    The reliability requirements of a submarine lightwave transmission system are discussed in a special issue of AT&T Tech. J. 64, 3 (1985).Google Scholar
  3. 3.
    DeLoach, B. C., Jr., B. W. Hakki, R. L. Hartman, and L. A. D’Asaro. Proc. IEEE 61, 1042 (1973).CrossRefGoogle Scholar
  4. 4.
    Petroff, P. M., and R. L. Hartman. Appl. Phys. Lett. 23, 469 (1973).CrossRefGoogle Scholar
  5. 5.
    Johnston, W. D., and B. I. Miller. Appl. Phys. Lett. 23, 1972 (1973).CrossRefGoogle Scholar
  6. 6.
    Petroff, P. M., W. D. Johnston Jr., and R. L. Hartman. Appl. Phys. Lett. 25, 226 (1974).CrossRefGoogle Scholar
  7. 7.
    Matsui, J., R. Ishida, and Y. Nannichi. Jpn. J. Appl. Phys. 14, 1555 (1975).CrossRefGoogle Scholar
  8. 8.
    Casey, H. C., and M. B. Panish, Chap. 8 in Heterostructure Lasers. New York: Academic Press, 1978.Google Scholar
  9. 9.
    Kressel, H., and J. K. Butler. Semiconductor Lasers and Heterojunction LEDs. New York: Academic Press, 1977.Google Scholar
  10. 10.
    Petroff, P. M., and D. V. Lang. Appl. Phys. Lett. 31, 60 (1977).CrossRefGoogle Scholar
  11. 11.
    Ueda, O., I. Umebu, S. Yamakoshi, and T. Kotani. J. Appl. Phys. 53, 2991 (1982).CrossRefGoogle Scholar
  12. 12.
    Ueda, O., S. Yamakoshi, S. Komiya, K. Akita, and T. Yamaoka. Appl. Phys. Lett. 36, 300 (1980).CrossRefGoogle Scholar
  13. 13.
    Yamakoshi, S., M. Abe, O. Wada, S. Komiya, and T. Sakurai. IEEE J. Quantum Electron. QE-17, 167 (1981).CrossRefGoogle Scholar
  14. 14.
    Temkin, H., C. L. Zipfel, and V. G. Keramidas. J. Appl. Phys. 52, 5377 (1981).CrossRefGoogle Scholar
  15. 15.
    Johnston, W. D., Jr., G. Y. Epps, R. E. Nahory, and M. A. Pollack. Appl. Phys. Lett. 33, 992 (1978)CrossRefGoogle Scholar
  16. 15b.
    Johnston, W. D., Chap. 7 in GaInAsP Alloy Semiconductors, ed. T. P. Pearsall. New York: John Wiley & Sons, 1982.Google Scholar
  17. 16.
    Mahajan, S., W. D. Johnston Jr., M. A. Pollack, and R. E. Nahory. Appl. Phys. Lett. 34, 717 (1979).CrossRefGoogle Scholar
  18. 17.
    Ueda, O., S. Yamakoshi, S. Komiya, and T. Kotani, Proc. Defects and Radiation Effects in Semiconductors, Ser. no. 59, Institute of Physics, Bristol, 1981.Google Scholar
  19. 18.
    A. K. Chin, in Scanning Electron Microscopy, Vol. III, p. 1069. Chicago: SEM Inc., 1982.Google Scholar
  20. 19.
    Mahajan, S., A. K. Chin, C. L. Zipfel, D. Brasen, B. H. Chin, R. T. Tung, and S. Nakahara. Mater. Lett. 2, 184(1984).CrossRefGoogle Scholar
  21. 20.
    Chin, A. K., C. L. Zipfel, M. Geva, I. Camlibel, P. Skeath, and B. H. Chin. Appl. Phys. Lett. 45, 37 (1984).CrossRefGoogle Scholar
  22. 21.
    Fukuda, M., K. Wakita, and G. Iwane. J. Appl. Phys. 54, 1246 (1983).CrossRefGoogle Scholar
  23. 22.
    Yamakoshi, S., M. Abe, S. Komiya, and Y. Toyamer. Proc. Int. Electron. Dev. meeting, p. 122 (1979).Google Scholar
  24. 23.
    Temkin, H., A. Mahajan, M. A. DiGiuseppe, and A. G. Dentai. Appl. Phys. Lett. 40, 562 (1982).CrossRefGoogle Scholar
  25. 24.
    Ueda, O., H. Imai, A. Yamaguchi, S. Komiya, I. Umebu, and T. Kotani. J. Appl. Phys. 55, 665 (1984).CrossRefGoogle Scholar
  26. 25.
    Shaw, D. A., and P. R. Thornton. Solid-State Electron. 13, 919 (1970).CrossRefGoogle Scholar
  27. 26.
    Kressel, H., and H. Mierop. J. Appl. Phys. 38, 5419 (1967).CrossRefGoogle Scholar
  28. 27.
    E. J. Flynn (personal communication).Google Scholar
  29. 28.
    Mizuishi, K., M. Sawai, S. Todoroki, S. Tsuji, M. Hirao, and M. Nakamura. IEEE J. Quantum Electron. QE-19, 1294 (1983).CrossRefGoogle Scholar
  30. 29.
    Gordon, E. I., F. R. Nash, and R. L. Hartman. IEEE Electron Device Lett. ELD-4, 465 (1983).CrossRefGoogle Scholar
  31. 30.
    Ikagami, T., K. Takahei, M. Fukuda, and K. Kuroiwa. Electron. Lett. 19, 282 (1983).CrossRefGoogle Scholar
  32. 31.
    Hakki, B. W., P. E. Fraley, and T. F. Eltringham. AT&T Tech. J. 64, 771 (1985).Google Scholar
  33. 32.
    Hartman, R. L., and R. W. Dixon. Appl. Phys. Lett. 26, 239 (1975).CrossRefGoogle Scholar
  34. 33.
    Joyce, W. B., K. Y. Liou, F. R. Nash, P. R. Bossard, and R. L. Hartman. AT&T Tech. J. 64, 717 (1985).Google Scholar
  35. 34.
    Mizuishi, K., M. Hirao, S. Tsuji, H. Sato, and M. Nakamura. Jpn. J. Appl. Phys. Part 1 21, 359 (1982).CrossRefGoogle Scholar
  36. 35.
    Runge, P. K., and P. R. Trischitta. J. Lightwave Technol. LT-2, 744 (1984).CrossRefGoogle Scholar
  37. 36.
    Fukuda, M. Reliability and degradation of semiconductor lasers and LEDs. Norwood, MA: Artech House, 1991.Google Scholar

Copyright information

© AT&T 1993

Authors and Affiliations

  • Govind P. Agrawal
    • 1
  • Niloy K. Dutta
    • 2
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations