Skip to main content

Degradation and Reliability

  • Chapter
Semiconductor Lasers

Abstract

The performance of semiconductor lasers can degrade during their operation. This degradation is usually characterized by an increase in the threshold current that is often accompanied by a decrease in the external differential quantum efficiency. The dominant mechanism responsible for this degradation is determined by one or several of the fabrication processes including epitaxy, device processing, and bonding. In addition, the degradation rate of lasers processed from a given wafer depends on the operating conditions, namely, the operating temperature and injection current. Although many of the degradation mechanisms are not fully understood, an extensive amount of empirical observations exists in the literature. These observations have allowed the fabrication of InGaAsP laser diodes with an extrapolated median lifetime in excess of 25 years1 at an operating temperature of 10°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nash, F. R., W. J. Sundburg, R. L. Hartman, J. R. Pawlik, D. A. Ackerman, N. K. Dutta, and R. W. Dixon. AT&T Tech. J. 64, 809 (1985).

    Google Scholar 

  2. The reliability requirements of a submarine lightwave transmission system are discussed in a special issue of AT&T Tech. J. 64, 3 (1985).

    Google Scholar 

  3. DeLoach, B. C., Jr., B. W. Hakki, R. L. Hartman, and L. A. D’Asaro. Proc. IEEE 61, 1042 (1973).

    Article  Google Scholar 

  4. Petroff, P. M., and R. L. Hartman. Appl. Phys. Lett. 23, 469 (1973).

    Article  Google Scholar 

  5. Johnston, W. D., and B. I. Miller. Appl. Phys. Lett. 23, 1972 (1973).

    Article  Google Scholar 

  6. Petroff, P. M., W. D. Johnston Jr., and R. L. Hartman. Appl. Phys. Lett. 25, 226 (1974).

    Article  Google Scholar 

  7. Matsui, J., R. Ishida, and Y. Nannichi. Jpn. J. Appl. Phys. 14, 1555 (1975).

    Article  Google Scholar 

  8. Casey, H. C., and M. B. Panish, Chap. 8 in Heterostructure Lasers. New York: Academic Press, 1978.

    Google Scholar 

  9. Kressel, H., and J. K. Butler. Semiconductor Lasers and Heterojunction LEDs. New York: Academic Press, 1977.

    Google Scholar 

  10. Petroff, P. M., and D. V. Lang. Appl. Phys. Lett. 31, 60 (1977).

    Article  Google Scholar 

  11. Ueda, O., I. Umebu, S. Yamakoshi, and T. Kotani. J. Appl. Phys. 53, 2991 (1982).

    Article  Google Scholar 

  12. Ueda, O., S. Yamakoshi, S. Komiya, K. Akita, and T. Yamaoka. Appl. Phys. Lett. 36, 300 (1980).

    Article  Google Scholar 

  13. Yamakoshi, S., M. Abe, O. Wada, S. Komiya, and T. Sakurai. IEEE J. Quantum Electron. QE-17, 167 (1981).

    Article  Google Scholar 

  14. Temkin, H., C. L. Zipfel, and V. G. Keramidas. J. Appl. Phys. 52, 5377 (1981).

    Article  Google Scholar 

  15. Johnston, W. D., Jr., G. Y. Epps, R. E. Nahory, and M. A. Pollack. Appl. Phys. Lett. 33, 992 (1978)

    Article  Google Scholar 

  16. Johnston, W. D., Chap. 7 in GaInAsP Alloy Semiconductors, ed. T. P. Pearsall. New York: John Wiley & Sons, 1982.

    Google Scholar 

  17. Mahajan, S., W. D. Johnston Jr., M. A. Pollack, and R. E. Nahory. Appl. Phys. Lett. 34, 717 (1979).

    Article  Google Scholar 

  18. Ueda, O., S. Yamakoshi, S. Komiya, and T. Kotani, Proc. Defects and Radiation Effects in Semiconductors, Ser. no. 59, Institute of Physics, Bristol, 1981.

    Google Scholar 

  19. A. K. Chin, in Scanning Electron Microscopy, Vol. III, p. 1069. Chicago: SEM Inc., 1982.

    Google Scholar 

  20. Mahajan, S., A. K. Chin, C. L. Zipfel, D. Brasen, B. H. Chin, R. T. Tung, and S. Nakahara. Mater. Lett. 2, 184(1984).

    Article  Google Scholar 

  21. Chin, A. K., C. L. Zipfel, M. Geva, I. Camlibel, P. Skeath, and B. H. Chin. Appl. Phys. Lett. 45, 37 (1984).

    Article  Google Scholar 

  22. Fukuda, M., K. Wakita, and G. Iwane. J. Appl. Phys. 54, 1246 (1983).

    Article  Google Scholar 

  23. Yamakoshi, S., M. Abe, S. Komiya, and Y. Toyamer. Proc. Int. Electron. Dev. meeting, p. 122 (1979).

    Google Scholar 

  24. Temkin, H., A. Mahajan, M. A. DiGiuseppe, and A. G. Dentai. Appl. Phys. Lett. 40, 562 (1982).

    Article  Google Scholar 

  25. Ueda, O., H. Imai, A. Yamaguchi, S. Komiya, I. Umebu, and T. Kotani. J. Appl. Phys. 55, 665 (1984).

    Article  Google Scholar 

  26. Shaw, D. A., and P. R. Thornton. Solid-State Electron. 13, 919 (1970).

    Article  Google Scholar 

  27. Kressel, H., and H. Mierop. J. Appl. Phys. 38, 5419 (1967).

    Article  Google Scholar 

  28. E. J. Flynn (personal communication).

    Google Scholar 

  29. Mizuishi, K., M. Sawai, S. Todoroki, S. Tsuji, M. Hirao, and M. Nakamura. IEEE J. Quantum Electron. QE-19, 1294 (1983).

    Article  Google Scholar 

  30. Gordon, E. I., F. R. Nash, and R. L. Hartman. IEEE Electron Device Lett. ELD-4, 465 (1983).

    Article  Google Scholar 

  31. Ikagami, T., K. Takahei, M. Fukuda, and K. Kuroiwa. Electron. Lett. 19, 282 (1983).

    Article  Google Scholar 

  32. Hakki, B. W., P. E. Fraley, and T. F. Eltringham. AT&T Tech. J. 64, 771 (1985).

    Google Scholar 

  33. Hartman, R. L., and R. W. Dixon. Appl. Phys. Lett. 26, 239 (1975).

    Article  Google Scholar 

  34. Joyce, W. B., K. Y. Liou, F. R. Nash, P. R. Bossard, and R. L. Hartman. AT&T Tech. J. 64, 717 (1985).

    Google Scholar 

  35. Mizuishi, K., M. Hirao, S. Tsuji, H. Sato, and M. Nakamura. Jpn. J. Appl. Phys. Part 1 21, 359 (1982).

    Article  Google Scholar 

  36. Runge, P. K., and P. R. Trischitta. J. Lightwave Technol. LT-2, 744 (1984).

    Article  Google Scholar 

  37. Fukuda, M. Reliability and degradation of semiconductor lasers and LEDs. Norwood, MA: Artech House, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 AT&T

About this chapter

Cite this chapter

Agrawal, G.P., Dutta, N.K. (1993). Degradation and Reliability. In: Semiconductor Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0481-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0481-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7579-4

  • Online ISBN: 978-1-4613-0481-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics