Skip to main content

Cytosolic Calcium Transport During Myocardial Protection

  • Chapter
Purines and Myocardial Protection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

  • 50 Accesses

Abstract

Myocardial ischemia occurs as the result of attenuation or cessation of coronary blood flow such that oxygen delivery to the myocardium is insufficient to meet oxygen requirements (1,2). In global myocardial ischemia coronary blood flow is completely obstructed resulting in the termination of substrate delivery and the discontinuation of catabolite removal. While it is generally accepted that the cessation of coronary blood flow and thus, oxygen delivery is the initial step in the process leading to myocardial ischemic injury, the sequential progression of events following the initial insult remain controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz AM. Effects of ischemia on contractile processes of heart muscle. Am J Cardiol 1972;32:456–460.

    Article  Google Scholar 

  2. Stembergh WC, Brunsting LA, Abd-Elfattah AS, Wechsler AS. Basal metabolic energy requirements of polarized and depolarized arrest in rat heart. Am J Physiol 1989;256:H846–H851.

    Google Scholar 

  3. Jennings RB, Reimer KA Lethal myocardial ischemic injury. Am J Pathol 1981;102:241–255.

    Google Scholar 

  4. Jennings RB, Steenbergen C. Nucleotide metabolism and cellular damage in myocardial ischemia. Am Rev Physiol 1985;47:727–749.

    Article  CAS  Google Scholar 

  5. Steenbergen C, Murphy E, Watts J, London R. Correlation between cytocolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 1990;66:135–146.

    PubMed  CAS  Google Scholar 

  6. Jimenez E, del Nido P, Sarin M. Effects of low extracellular calcium on cytosolic calcium and ischemic contracture. J Surg Res 1990;49:252–255.

    Article  PubMed  CAS  Google Scholar 

  7. Pridjian A, Levitsky S. Intracellular sodium and calcium in the post-ischemic myocardium. Ann Thorac Surg 1987;43:416–419.

    Article  PubMed  CAS  Google Scholar 

  8. Ataka K, Chen D, Levitsky S. Effect of aging on intracellular ca2+, pHi, and contractility during ischemia and reperfusion. Circulation 1992;86:11371–11376.

    Google Scholar 

  9. Nakamura H, del Nido P, Jimenez E. Age related differences in cardiac susceptability to ischemia/reperfusion injury. Response to deferoxamine. J Thorac Cardiovasc Surg 1992;104:165–172.

    PubMed  CAS  Google Scholar 

  10. Jimenez E, del Nido P, Feinberg H. Redistribution of myocardial calcium during ischemia. Relation to onset of contracture. J Thorac Cardiovasc Surg 1993;105:988–94.

    PubMed  CAS  Google Scholar 

  11. Opie LH, editor. Myocardial contraction and relaxation. The Heart, Physiology and Metabolism, 2nd edition, 1991; 176–194.

    Google Scholar 

  12. Kojima S, Wu ST, Waters TA, Parmley WW, Wikman-Coffelt J: Effects of perfusion pressure on intracellular calcium, energetics, and function in perfused rat hearts. Am J Physiol 1993 264(Heart Circ Physiol 33):H183–H189.

    PubMed  CAS  Google Scholar 

  13. Reimer K, Jennings R. Myocardial ischemia, hypoxia, and infarction. New York: Raven Press, Ltd., 1875–1973. (Fozzard H, ed. in The Heart and Cardiovascular System; vol 2, Second edition).(1992.)

    Google Scholar 

  14. Nayler W, Panagiotopoulos S, Elz J: Calcium mediated damage during post-ischemic reperfusion. J Mol Cell Cardiol 1988;20:41054.

    Article  Google Scholar 

  15. Das D, Engelman R, Rousoum J: Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 1986;251:1471–1479.

    Google Scholar 

  16. Jimenez E, del Nido P, Sarin M: Effects of low extracellular calcium on cytosolic calcium and ischemic contracture. J Surg Res 1990:49:252–255.

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura H, del Nido PJ, Jimenez E, Sarin M, Feinberg H, Levitsky S: Age-related differences in cardiac susceptibility to ischemia/reperfusion injury. Response to deferoxamine. J Thorac Cardiovasc Surg 1992;104:165–72.

    PubMed  CAS  Google Scholar 

  18. Grynkiewicz G, Poenie M, Tsien R: A New Generation of Ca2+ Indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.

    PubMed  CAS  Google Scholar 

  19. Chen DP, Jimenez E, Ataka K, Levitsky S, Feinberg H. Fura 2 determination of [Ca2+]i in isolated perfused heart using R wave-gated electromechanical shutters. J Appl Physiol 1994;76:1394–99.

    PubMed  CAS  Google Scholar 

  20. Tsukube T, McCulty JD, Faulk E, Federman M, LoCicero J, Krukenkamp IB, Levitsky S. Warm magnesium cardioplegia reduces cytosolic and nuclear calcium and DNA fragmentation in the senescent myocardium. Ann Thorac Surg 1994. (In press)

    Google Scholar 

  21. Wright R, Levitsky S, Rao K, Holland C, Feinberg H. Potassium cardioplegia. Arch Surg 1978;113:976–980.

    PubMed  CAS  Google Scholar 

  22. Burkhoff D, Kalil-Filho R, Gerstenblith G. Oxygen consumption is less in rat hearts arrested by low calcium than by high potassium at fixed flow. Am J Physiol (Heart Circ. Physiol) 1990;259:H1142–H1147.

    CAS  Google Scholar 

  23. Hearse DJ, Garlick PB, Humphrey SM. Ischemic contracture of the myocardium. Mechanism and prevention. Am J Cardiol 1977;39:986–993.

    Article  PubMed  CAS  Google Scholar 

  24. Ataka K, Chen D, McCully JD, Levitsky S, Feinberg H. Magnesium cardioplegia prevents accumulation of cytosolic calcium in the ischemic myocardium. J Mol Cell Cardiol 1993;25:1387–1390

    Article  PubMed  CAS  Google Scholar 

  25. Shine KI, Douglas AM. Magnesium effects in rabbit ventricle. Am J Physiol 1975;288:1545–1554.

    Google Scholar 

  26. Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on calcium and is modulated by by magnesium, adenine nucleotide, and calmodulin. J Biol Chem 1987;262:3065–3073.

    PubMed  CAS  Google Scholar 

  27. Shine KI. Myocardial effects of magnesium. Am J Physiol (Heart Circ Physiol) 1979;237(4):H41329–H423.

    Google Scholar 

  28. Lansman JB, Hess P, Tsien RW. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 1986;88:321–347.

    Article  PubMed  CAS  Google Scholar 

  29. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73:413–67.

    PubMed  CAS  Google Scholar 

  30. Misare BP, Krukenkamp IB, Levitsky S. Age-dependent sensitivity to unprotected cardiac ischemia: The senescent myocardium. J Thorac Cardiovasc Surg 1992;103:60–64.

    PubMed  CAS  Google Scholar 

  31. McCully JD, Mably J, Sole M, Liew C. RNA transcription and translation in the hearts of normal and cardiomyopathic Syrian hamsters. Biochem Cell Biol 1991;69:88–92.

    Article  PubMed  CAS  Google Scholar 

  32. Claycomb WC. DNA synthesis and DNA polymerase activity in differentiating cardiac muscle. Biochem Biophys Res Comm 1973;54:715–720.

    Article  PubMed  CAS  Google Scholar 

  33. McCully JD, Liew CC. RNA transcription in myocardial cell nuclei during postnatal development: A study establishing an in vitro transcriptional assay system. Biochem J 1988;256:441–445.

    PubMed  CAS  Google Scholar 

  34. Liew CC, Jackowski GJ, Sole MJ. Nonenzymatic separation of myocardial cell nuclei from whole heart tissue. Am J Physiol 244:C3–C10.

    Google Scholar 

  35. Mazzanti M, DeFelice LJ, Cohen J, Malter H. Ion channels in the nuclear envelope. Nature 1990;343:764–67.

    Article  PubMed  CAS  Google Scholar 

  36. Nicotera P, McConkey DJ, Jones DP, Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci (USA) 1989;86:453–57.

    Article  CAS  Google Scholar 

  37. Brini M, Murgia M, Pasti L, Picard D, Pozzen T, Rizzuto R. Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. Embo J 1993;12:4813–4819.

    PubMed  CAS  Google Scholar 

  38. Al-Mohnna FA, Caddy KWT, Bolsover SR. The nucleus is insulated from large cytosolic calcium ion changes. Nature 1994;367:745–749.

    Article  Google Scholar 

  39. Malloy C, Cunningham C, Radda G. The metabolic state of the rat liver in vivo measured by 31P-NMR spectroscopy. Biochim Biophys Acta 1986;885:1–11.

    Article  PubMed  CAS  Google Scholar 

  40. Williams G, Mosher T, Smith M. Simultaneous determination od intracellular magnesium and pH from the three 31P NMR chemical shifts of ATP. Ann Biochem 1993;214:458–467.

    Article  CAS  Google Scholar 

  41. Bak M, Ingwall J. NMR-invisible ATP in heart: fact or function? Am J Physiol 1992;262:E943–E947.

    PubMed  CAS  Google Scholar 

  42. Shattock MJ, Hearse DJ, Fry CH. The ionic basis of the anti-ischemic and anti-arrhythmic properties of magnesium in the heart. J Am Col Nutr 1987;6:27–33.

    CAS  Google Scholar 

  43. Pernot AC, Ingwall JS, Menasche P, Grousset C, Berchot M, Piwinca A, Fossel ET. Evaluation of high energy phosphate metabolism during cardioplegic arrest and reperfusion: A phosphorous-31 nuclear magnetic resonance study. Circulation 1983;67:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  44. Agus Z, Morad M. Modulation of cardiac ion channels by magnesium. Ann Rev Physiol 1991;53:299–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

McCully, J.D., Tsukube, T., Krukenkamp, I.B., Levitsky, S. (1996). Cytosolic Calcium Transport During Myocardial Protection. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics