Skip to main content

Energy and Cation Control in the Reoxygenated Myocardial Cell

  • Chapter
Purines and Myocardial Protection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

  • 50 Accesses

Abstract

The development of cell injury in ischemic tissue starts with a deficit in the cellular balance of energy. The energetic deficit leads to a slowdown or cessation of important metabolic functions, among these the cellular control of Na+ and Ca2+ ions. When the cellular reserves of energy are depleted, cation pumps regulating the normal intracellular ionic milieu fail due to a lack of energy. A lone-lasting overload of the cytosolic space and intracellular organelles with excess Car2+ can be deleterious for the cell, as a number of structure degrading processes may become activated. In muscle cells, the activation of the myofibrillar contractile apparatus by high levels of Ca2+ may additionally cause mechanical cell damage. The loss of cellular Ca2+ homeostasis is a sign of advanced, but not necessarily irreversibly cell injury. For a better understanding of the pathogenesis of progressive myocardial injury the energy and cation control in the oxygen deprived and reoxygenated cardiomyocyte must be analyzed. This article provides a brief review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noll T, de Groot H, Wissemann P. A computer-supported oxystat system maintaining steady-state O2 partial pressures and simultaneously monitoring O2 uptake in biological systems. Biochem J 1986;236:765–9.

    PubMed  CAS  Google Scholar 

  2. Zimmer HG, Trendelenburg C, Kammermeier H et al. De novo synthesis of myocardial adenine nucleotides in the rat. Circ Res 1973;32:635–42.

    PubMed  CAS  Google Scholar 

  3. Siegmund B, Koop A, Klietz T et al. Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol 1990;258:H285–91.

    PubMed  CAS  Google Scholar 

  4. Hearse DJ, Humphrey SM, Chain EB Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J Mol Cell Cardiol 1973;5:395–407.

    Article  PubMed  CAS  Google Scholar 

  5. Ganote CE. Contraction band necrosis and irreversible moycardial injury. J Mol Cell Cardiol 1983;15:67–73.

    Article  PubMed  CAS  Google Scholar 

  6. Vander Heide RS, Angelo JP, Altschuld RA et al. Energy dependence of contraction band formation in perfused hearts and isolated adult cardiomyocytes. Am J Pathol 1986;125:55–68.

    Google Scholar 

  7. Allshire A, Piper HM, Cuthbertson KSR et al. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J 1987;244:381–5.

    PubMed  CAS  Google Scholar 

  8. Siegmund B, Klietz T, Schwartz P et al. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am J Physiol 1991;260:H426–35.

    PubMed  CAS  Google Scholar 

  9. Siegmund B, Zude R, Piper HM. Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload. Am J Physiol 1992;263:H1262–9.

    PubMed  CAS  Google Scholar 

  10. Siegmund B, Ladilov Y, Piper HM. Importance of sodium for the recovery of Ca2+ control in reoxygenated cardiomyocytes. Am J Physiol 1994;267:H506–13.

    PubMed  CAS  Google Scholar 

  11. Schlüter KD, Weber M, Schraven E et al. No donor SINå_1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Phyiol 1994;267:H1461–6.

    Google Scholar 

  12. Ladilov Y, Siegmund B, Piper HM. Protection of reoxygenated cardiomyocytes against hypercontracture by inhibtion of Na+/H+ exchange. Am J Physiol, in press.

    Google Scholar 

  13. Marban E, Kitakaze M, Kusuoka HJ et al. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 1987;84:6005–9.

    Article  PubMed  CAS  Google Scholar 

  14. Steenbergen C, Murphy E, Levy L et al. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987;60:700–7.

    PubMed  CAS  Google Scholar 

  15. Elz J, Nayler WG. Contractile activity and reperfusion-induced calcium gain after ischemia in the isolated rat heart. Lab Invest 1988;58:653–9.

    PubMed  CAS  Google Scholar 

  16. Schlüter KD, Schwartz P, Siegmund B et al. Prevention of the oxygen paradox in anoxic-reoxygenated hearts. Am J Physiol 1991;261:H416–23.

    PubMed  Google Scholar 

  17. Garc ía -Dorado D, Theroux P, Duran JM et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 1992;85:1160–74.

    Google Scholar 

  18. Schlack W, Uebing A, Schäfer M et al. Regional contractile blockade at the outset of reperfusion reduces infarct size in the dog heart. Pflügers Arch 1994;428:134–41.

    Article  PubMed  CAS  Google Scholar 

  19. Weissberg PL, Little PJ, Cragoe EJ et al. The pH of spontaneously beating cultured rat heart cells is regulated by an ATP-calmodulin-dependent Na+/H+ antiport. Circ Res 1989;64:676–85.

    PubMed  CAS  Google Scholar 

  20. Ikeda U, Arisaka H, Takayasu T et al. Protein kinase C activation aggravates hypoxic myocardial injury by stimulating Na+/H+ exchange. J Mol Cell Cardiol 1988;20:493–500.

    Article  PubMed  CAS  Google Scholar 

  21. Anderson SE, Murphy E, Steenbergen C et al. Na+/H+ exchange in myocardium: effects of hypoxia and acidification on Na+ and Ca2+. Am J Physiol 1990;259:C940–48.

    PubMed  CAS  Google Scholar 

  22. Pike MM, Luo CS, Clark MD et al. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+/H+ exchange. Am J Physiol 1993;265:H2017–26.

    PubMed  CAS  Google Scholar 

  23. Scheufler E, Henrichs M, Guttmann I et al. Effect of the Na+/H+exchange inhibitor Ethyl-Isopropyl-Amiloride (EIPA) during ischemia and reperfusion. Brit J Pharmacol 1993;108–118P.

    Google Scholar 

  24. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 1989;65:1045–56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Piper, H.M., Ladilov, Y.V., Siegmund, B. (1996). Energy and Cation Control in the Reoxygenated Myocardial Cell. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics