Skip to main content

Role of Activation of Ecto-5’-Nucleotidase for Cardioprotection in Ischemic and Reperfusion Injury: Role of Purine and Adenosine Metabolism

  • Chapter
  • 52 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

Abstract

Adenosine is known to regulate myocardial and coronary circulatory functions (1–4). The effects of adenosine are mediated by several distinct receptors (5,6), i.e., A1, A2 and A3 receptors. A1 and A3 adenosine receptors, mainly located in atrial and ventricular myocardium and sinoatrial/atrioventricular nodes, are responsible for inhibition of adenylyl cyclase activity. A2 adenosine receptors, mainly located in coronary endothelial and smooth muscle cells, are responsible for stimulation of this adenylyl cyclase activity. Adenosine has been known to attenuate the extends of myocardial ischemia, stunning and infarction. The rationale of the beneficial effects of adenosine does not seem simple. This is because myocardial ischemia and reperfusion injury is caused by 1) activated leukocytes and platelets (7,8), 2) ATP depletion and Ca overload of myocardium (9,10,11), and 3) catecholamine release from the presynaptic nerves (12,13), as well as 4) the impaired coronary circulation (14). Intriguingly, adenosine attenuates all of these deleterious actions and thereby attenuates ischemia/reperfusion injury (1–4). Recently, the role of adenosine for the infarct size-limiting effect of ischemic preconditioning has been extensively focused. Ischemic preconditioning means that brief periods of ischemia before sustained ischemia limit infarct size (15,16). Liu et al. (17) demonstrated that an exposure to 8-sulfophenyltheophylline blunts the infarct size-limiting effect of ischemic preconditioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berne RM, Rubio R. Coronary circulation. In Handbook of Physiology, Sec 2, The Cardiovascular system, Berne RM, Sperelakis N, Geiger SR (eds) American Physiology Society, Washington DC, pp 878–952.

    Google Scholar 

  2. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–813.

    PubMed  CAS  Google Scholar 

  3. Hori M, Kitakaz M. Adenosine, the heart, and coronary circulation. Hypertension 1991;18:565–574.

    PubMed  CAS  Google Scholar 

  4. Kitakaze M, Hori M, Kamada T. Role of adenosine and its interaction with alpha adrenoceptor activity in ischemic and reperfusion injury of the myocardium. Cardiovasc Res 1993;27:18–27.

    Article  PubMed  CAS  Google Scholar 

  5. Londos C, Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 1977;74;5482–5486.

    Article  PubMed  CAS  Google Scholar 

  6. Londos C, Cooper DMF, Schlegel W, Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 1978;75:5362–5366

    Article  PubMed  CAS  Google Scholar 

  7. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 1986;78:760–770

    Article  PubMed  CAS  Google Scholar 

  8. Kitakaze M, Hori M, Sato H, Takashima S, Inoue M, Kitabatake A, Kamada T. Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res 1991;69:1402–1408

    PubMed  CAS  Google Scholar 

  9. Steenbergen C, Murphy E, Levy L, London RE. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987;60:700–707

    PubMed  CAS  Google Scholar 

  10. Kitakaze M, Weisman HF, Marban E. Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 1988;77:685–695

    Article  PubMed  CAS  Google Scholar 

  11. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 1988;82:920–927

    Article  PubMed  CAS  Google Scholar 

  12. Richardt G, Wassa W, Kranzhofer R, Mayer E, Schoming A. Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: A protective mechanisms in early myocardial ischemia. Circ Res 1987;61:117–123.

    PubMed  CAS  Google Scholar 

  13. Wakade AR, Wakade TD. Inhibition of noradrenaline release by adenosine. J Physiol 1978;282:35–49.

    PubMed  CAS  Google Scholar 

  14. Stahl LD, Weiss HR, Becker LC. Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally stunned myocardium. Circulation 1988;77:865–872.

    Article  PubMed  CAS  Google Scholar 

  15. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  16. Li GC, Vasquez JA, Gallagher KP, and Lucchesi BR. Myocardial protection with preconditioning. Circulation 1990;82:609–619.

    Article  PubMed  CAS  Google Scholar 

  17. Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by At adenosine receptors in rabbit heart. Circulation 1991;84:350–356.

    PubMed  CAS  Google Scholar 

  18. Schrader J. Metabolism of adenosine and site of production in the heart. In Berne RM, Rall TW, Rubio R, editors. Regulatory Function of Adenosine, Martinus Nijhoff Publisher, Boston, Massachusetts, 1983;133–156.

    Google Scholar 

  19. Achterberg PW, de Tombep P, Harmsen E, de Jong JW. Myocardial S-adenosylhomocysteine hydrolase is important for adenosine production during normoxia. Biochem Biophys Acta 1985;840:393–400.

    PubMed  CAS  Google Scholar 

  20. Sparks HV Jr, Bardenheuer H. Regulation of adenosine formation in the heart. Circ Res 1986;58:193–201.

    PubMed  CAS  Google Scholar 

  21. Llyod GE, Scharader J. The importance of the transmethylation pathway for adenosine metabolism in the heart. In Gerlach E, Becker BF, editors. Topics and Perspectives in Adenosine Research. Springier-Verlag, Berlin Heidelberg, 1987;199–207.

    Google Scholar 

  22. Itoh R. Regulation of cytosol-5′-nucleotidase by adenylate energy charge. Biochim Biophys Acta 1981;659;31–37.

    PubMed  CAS  Google Scholar 

  23. Frick GP, Lowenstein JM. Studies of 5′-nucleotidases in the perfused rat heart, including measurements of the enzyme in perfused skeletal muscle and liver. J Biol Chem 1976;251;6372–6378.

    PubMed  CAS  Google Scholar 

  24. Worku Y, Newby AC. The mechanism of adenosine production in rat polymorphonuclear leukocytes. Biochem J 1983;214:1–6.

    Google Scholar 

  25. Pearson JD, Hellewell PG, Gordon JL. Adenosine uptake and adenine nucleotide metabolism by vascular endothelium. In Berne RM, Rall TW, Rubio R, editors. Regulatory Function of Adenosine. Martinus Nijhoff, Boston, Massachusetts, 1983;333–346.

    Google Scholar 

  26. Imai S, Nakazawa M, Imai H, Jin H. 5′-Nulcoeitdase inhibitors and the myocardial reative hypermia and adenosine content. In Gerlach E, Becker BF, editors. Topics and Perspectives in Adenosine Research. Springer-Verlag, Berlin, Heidelberg, 1987;416–426.

    Google Scholar 

  27. Kitakaze M, Minamino T, Node K, Komamura K, Hori M, Kamada T. Activation of K+ channels increases adenosine release in canine myocardium Eur J Cardiol, 1994. (Abstract) (In press)

    Google Scholar 

  28. Hassessian H, Boden P, Burnstock G. Glybenclamide antagonizes flow-evoked ATP release to increase resistance in the isolated perfused pulmonary vascular bed of the rat. J Physiol 1993;459:139P. (Abstract)

    Google Scholar 

  29. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial ischemic preconditoning in dogs. Circ Res 1992;70:223–233.

    PubMed  CAS  Google Scholar 

  30. Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T. Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implication for myocardial salvage. Circulation 1993;87:208–215.

    PubMed  CAS  Google Scholar 

  31. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T. The infarct size limiting effect of ischemic preconditioning is blunted by inhibition of 5′-nucleotidase activity and attenuation of adenosine release. Circulation. 1994;89:1237–1246.

    PubMed  CAS  Google Scholar 

  32. Van Wylen DGL. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation 1994;89:2283–2289.

    PubMed  Google Scholar 

  33. Sparks HV Jr, Bardengeuer H. Regulation of adenosine formation by the heart. Circ. Res. 1986;58:193–201.

    PubMed  CAS  Google Scholar 

  34. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T. Alpha 1 -adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 1994;93:2197–2205.

    Article  PubMed  CAS  Google Scholar 

  35. Kitakaze M, Minamino T, Shinozaki Y, Sakamoto H, Mori H, Kurihara T, Hori M. Activation of protein kinase C and subsequent activation of ectosolic 5′-nucleotidase as a major cause for the infarct size-limiting effect of ischemic preconditioning. Circualtion. (Abstract) (In press)

    Google Scholar 

  36. Ely SW, Menzer RM, Lasley RB, Lee BK, Berne RM. Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J Thorac Cardiovasc Surg 1985;90:549–556.

    PubMed  CAS  Google Scholar 

  37. Kitakaze M, Hori M, Sato H, Iwakura K, Gotoh K, Inoue M, Kitabatake A, Kamada T. Beneficial effects of alpha 1 -adrenoceptor activity on myocardial stunning in dogs. Circ Res 1991;68:1322–1339.

    PubMed  CAS  Google Scholar 

  38. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T. Alpha 1 -Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 1987;60:631–639.

    PubMed  CAS  Google Scholar 

  39. Taegtmeyer H, Roberts AFC, Raine AEG. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 1985;6:864–870.

    Article  PubMed  CAS  Google Scholar 

  40. Bittl JA, Ingwall JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart: A 31P-NMR magnetization transfer study. J Biol Chem 1985;260:3512–3517.

    PubMed  CAS  Google Scholar 

  41. Schrader J, Haddy FJ, Gerlach E. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch 1977;369:1–6.

    Article  PubMed  CAS  Google Scholar 

  42. Rubio R, Wiedmeier VT, Berne RM. Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 1974;6:561–566.

    Article  PubMed  CAS  Google Scholar 

  43. Wadsworth RM. The effects of aminophylline on the increased myocardial blood flow produced by systemic hypoxia or by coronary artery occlusion. Eur Pharmacol 1972;20:130–132.

    Article  CAS  Google Scholar 

  44. Merrill GF, Downey F, Jones CE. Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia. Am J Physiol 1986;250:H579–H583.

    PubMed  CAS  Google Scholar 

  45. Kitakaze M, Hori M, Iwakura K, Sato H, Gotoh K, Tada M. Protein kinase C regulates production of adenosine in hypoxic myocytes of rats (abstract). Circulation 1989;80:11–498.

    Google Scholar 

  46. Forrester T, Williams CA. Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol (Lond) 1977;268;371–390.

    CAS  Google Scholar 

  47. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990;247:1341–1344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kitakaze, M. et al. (1996). Role of Activation of Ecto-5’-Nucleotidase for Cardioprotection in Ischemic and Reperfusion Injury: Role of Purine and Adenosine Metabolism. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics