Skip to main content

Adenosine and the Polymorphonuclear Leukocyte Function, Mechanisms and Production

  • Chapter
Purines and Myocardial Protection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

  • 50 Accesses

Abstract

It is now generally accepted that inflammatory cells, the most abundant of which are polymorphonuclear leukocytes (neutrophils), make a significant contribution to ischemic tissue injury. This hypothesis suggests that the development of agents that inhibit neutrophil function may yield new pharmacologic agents for the prevention of reperfusion injury in the heart and other tissues. Over the past decade we and others have demonstrated that adenosine specifically diminishes those stimulated functions of neutrophils that contribute to the propagation of reperfusion injury. That the endogenous release of adenosine by neutrophils and other cells present at inflamed sites may act as a brake on neutrophil-mediated tissue destruction at ischemic or inflamed sites was first suggested by our in vitro studies (1,2). Since our original studies a number of investigators have further explored the mechanism of adenosine release from neutrophils and other cells; based on these insights a variety of potential therapeutic agents have been developed. Some of these agents are discussed elsewhere {chapter...}. In this chapter we will review the effects of adenosine on neutrophil function, neutrophil adenosine receptors and release of adenosine by neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn and R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 1986;78:760.

    Article  PubMed  CAS  Google Scholar 

  2. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn, R. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 1983;158:1160.

    Article  PubMed  CAS  Google Scholar 

  3. Marone G, Thomas L, Lichtenstein L. The role of agonists that activate adenylate cyclase in the control of cAMP metabolism and enzyme release by human polymorphonuclear leukocytes. J Immunol 1980; 125:2277.

    PubMed  CAS  Google Scholar 

  4. Cronstein BN, Rosenstein ED, Kramer SB, Weissmann G, Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol 1985;135:1366.

    PubMed  CAS  Google Scholar 

  5. Roberts PA, Newby AC, Hallett MB, Campbell AK. Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem J 1985;227:669.

    PubMed  CAS  Google Scholar 

  6. de la Harpe J, Nathan CF. Adenosine regulates the respiratory burst of cytokine-triggered human neutrophils adherent to biologic surfaces. J Immunol 1989;143:596.

    PubMed  Google Scholar 

  7. Nielson CP, Vestal RE. Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3′: 5′-adenosine monophosphate, and intracellular calcium. Br J Pharmacol 1989;97:882.

    PubMed  CAS  Google Scholar 

  8. Zheng H, Crowley JJ, Chan JC, Raffin, TA. Attenuation of LPS-induced neutrophil thromboxane b2 release and chemiluminescence. J Cell Physiol 1991;146:264.

    Article  PubMed  CAS  Google Scholar 

  9. Currie MS, Rao KM, Padmanabhan J, Jones A, Crawford J, Cohen HJ. Stimulus-specific effects of pentoxifylline on neutrophil CR3 expression, degranulation, and superoxide production. J Leuk Biol 1990;47:244.

    CAS  Google Scholar 

  10. Burkey TH, Webster RO. Adenosine inhibits fMLP-stimulated adherence and superoxide anion generation by human neutrophils at an early step in signal transduction. Biochim Biophys Acta 1993; 1175:312.

    Article  PubMed  CAS  Google Scholar 

  11. Sipka S, Szentmiklosi AJ, Nagy A, Taskov V, Szegedi G. Inhibition of the zymosan-induced chemiluminescence of human phagocytes by adenosine, polyadenylic acid and agents influencing adenosine metabolism. Allergologia Et Immunopathologia 1989;17:209.

    PubMed  CAS  Google Scholar 

  12. Basford RE, Clark RL, Stiller RA, Kaplan SS, Kuhns DB, Rinaldo JE. Endothelial cells inhibit receptor-mediated superoxide anion production by human polymorphonuclear leukocytes via a soluble inhibitor. Am J Respiratory Cell Mol Biol 1990;2:235.

    CAS  Google Scholar 

  13. Günther GR, Herring MB. Inhibition of neutrophil superoxide production by adenosine released from vascular endothelial cells. Ann Vase Surg 1991;5:325.

    Article  Google Scholar 

  14. Axteil RA, Sandborg RR, Smolen JE, Ward PA, Boxer LA Exposure of human neutrophils to exogenous nucleotides causes elevation in intracellular calcium, transmembrane calcium fluxes, and an alteration of a cytosolic factor resulting in enhanced superoxide production in response to FMLP and arachidonic acid. Blood 1990;75:1324.

    Google Scholar 

  15. Kaneko M, Suzuki K, Furui H, Takagi K, Satake T. Comparison of theophylline and enprofylline effects on human neutrophil superoxide production. Clin Exp Pharmacol Physiol 1990;17:849.

    Article  PubMed  CAS  Google Scholar 

  16. McGarrity ST, Stephenson AH, Webster RO. Regulation of human neutrophil functions by adenine nucleotides. J Immunol 1989;142:1986.

    PubMed  CAS  Google Scholar 

  17. Thiel M, Bardenheuer H. Regulation of oxygen radical production of human polymorphonuclear leukocytes by adenosine: the role of calcium. Pflugers Arch — Eur J Physiol 1992;420:522.

    Article  CAS  Google Scholar 

  18. Schmeichel CJ, Thomas LL. Methylxanthine bronchodilators potentiate multiple human neutrophil functions. J Immunol 1987;138:1896.

    PubMed  CAS  Google Scholar 

  19. Richter J. Effect of adenosine analogues and cAMP-raising agents on TNF-, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J Leuk Biol 1992;51:270.

    CAS  Google Scholar 

  20. Skubitz KM, Wickham NW, Hammerschmidt DE. Endogenous and exogenous adenosine inhibit granulocyte aggregation without altering the associated rise in intracellular calcium concentration. Blood 1988;72:29.

    PubMed  CAS  Google Scholar 

  21. Walker BA, Cunningham TW, Freyer DR, Todd RF, Johnson KJ, Ward PA. Regulation of superoxide responses of human neutrophils by adenine compounds. Independence of requirement for cytoplasmic granules. Lab Invest 1989;61:515.

    PubMed  CAS  Google Scholar 

  22. Cronstein BN, Kramer SB, Rosenstein ED, Korchak HM, Weissmann G, Hirschhorn R. Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Biochem J 1988;252:709.

    PubMed  CAS  Google Scholar 

  23. Grinstein S, Furuya W. Cytoplasmic pH regulation in activated human neutrophils: effects of adenosine and pertussis toxin on Na+/H+ exchange and metabolic acidification. Biochim Biophys Acta 1986;889:301.

    Article  PubMed  CAS  Google Scholar 

  24. Becker BF, Zahler S, Raschke P, Schwartz LM, Beblo S, Schrodl W, Kiesl D. Adenosine enhances neutrophil sticking in the coronary system: a novel mechanism contributing to cardiac reperfusion damage. Pharm Pharmacol Lett 1992;2:8.

    CAS  Google Scholar 

  25. Rose FR, Hirschhorn R, Weissmann G, Cronstein BN. Adenosine promotes neutrophil Chemotaxis. J Exp Med 1988;167:1186.

    Article  PubMed  CAS  Google Scholar 

  26. Goldstein IM, Roos D, Kaplan HB, Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest 1975;56:1155.

    Article  PubMed  CAS  Google Scholar 

  27. Cronstein BN, Levin RI, Philips MR, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine Al receptors and inhibited via adenosine A2 receptors. J Immunol 1992; 148:2201.

    Google Scholar 

  28. Cronstein BN, Duguma L, Nicholls D, Hutchison A, Williams M. The adenosine/neutrophil paradox resolved. Human neutrophils possess both Al and A2 receptors which promote Chemotaxis and inhibit O2- generation, respectively. J Clin Invest 1990;85:1150.

    Article  PubMed  CAS  Google Scholar 

  29. Wollner A, Wollner S, Smith JB. Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (CD11b/CD18) expression on FMLP-stimulated neutrophils. Am J Resp Cell Mol Biol 1993;9:179.

    CAS  Google Scholar 

  30. Buyon JP, Abramson SB, Philips MR, Slade SG, Ross GD, Weissmann G, Winchester RJ. Dissociation between increased surface expression of gpl65/95 and homotypic neutrophil aggregation. J Immunol 1988;140:3156.

    PubMed  CAS  Google Scholar 

  31. Vedder NB, Harlan JM. Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium. J Clin Invest 1988;81:676.

    Article  PubMed  CAS  Google Scholar 

  32. Philips MR, Buyon JP, Winchester R, Weissmann G, Abramson SB. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation. J Clin Invest 1988;82:495.

    Article  PubMed  CAS  Google Scholar 

  33. Salmon JE, Cronstein BN. Fcgamma Receptor-Mediated functions in neutrophils are modulated by adenosine receptor occupancy: Al receptors are stimulatory and A2 receptors are inhibitory. J Immunol 1990; 145:2235.

    PubMed  CAS  Google Scholar 

  34. Stewart AG, Harris T. Adenosine inhibits platelet-activating factor, but not tumour necrosis factor-alpha-induced priming of human neutrophils. Immunology 1993;78:152.

    PubMed  CAS  Google Scholar 

  35. Takenawa T, Ishitoya J, Nagai Y. Inhibitory effect of Prostaglandin E2, Forskolin, and Dibutyryl cAMP on Arachidonic Acid Release and Inositol Phospholipid Metabolism in Guinea Pig Neutrophils. J Biol Chem 1986;261:1092.

    PubMed  CAS  Google Scholar 

  36. Colli S, Tremoli E. Multiple effects of dipyridamole on neutrophils and mononuclear leukocytes: adenosine-dependent and adenosine-independent mechanisms. J Lab Clin Med 1991;118:136.

    PubMed  CAS  Google Scholar 

  37. Ver Donck KL, Verheyen WJ, Van Belle H. Nucleoside transport inhibition and fMLP-stimulated whole blood luminescence. J Mol Cell Cardiol 1991;23:783.

    Article  Google Scholar 

  38. van Calker D, Müller M, Hamprecht B. Adenosine regulates, via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 1979;33:999.

    Article  PubMed  Google Scholar 

  39. Londos C, Cooper DMF, Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 1980;77:2551.

    Article  PubMed  CAS  Google Scholar 

  40. Tucker AL, Linden J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 1993;27:62.

    Article  PubMed  CAS  Google Scholar 

  41. Martini C, Di Sacco S, Tacchi P, Bazzichi L, Soletti A, Bondi F, Ciompi ML, Lucacchini A. A2 adenosine receptors in neutrophils from healthy volunteers and patients with rheumatic disease. In Harkness RA, editor. Purine and Pyrimidine Metabolism in Man VII, Part A. Plenum Press, New York, NY, 1991;459–462.

    Google Scholar 

  42. Salmon JE, Brownlie C, Brogle N, Edberg JC, Chen B-X, Erlanger BF. Human mononuclear phagocytes express adenosine Al receptors: a novel mechanism for differential regulation of Fc-gamma receptor function. J Immunol 1993;151:2775. (Abstract)

    Google Scholar 

  43. Hutchison AJ, Oei HH, Ghai GR, Williams M. 1989. CGS21680, an A2 selective adenosine (ADO) receptor agonist with preferential hypotensive activity. FASEB J3:A281. (Abstract)

    Google Scholar 

  44. Ramkumar V, Stiles GL. Reciprocal modulation of agonist and antagonist binding to Al adenosine receptors by guanine nucleotides is mediated via a pertussis toxin-sensitive G protein. J Pharmacol Exp Ther 1988;246:1194.

    PubMed  CAS  Google Scholar 

  45. Ramkumar V, Stiles GL. A novel site of action of a high affinity Al adenosine receptor antagonist. Biochem Biophys Res Commun 1988;153:939.

    Article  PubMed  CAS  Google Scholar 

  46. Dolphin AC, Prestwich SA. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 1985;316:148.

    Article  PubMed  CAS  Google Scholar 

  47. Monaco L, DeManno DA, Martin MW, Conti M. Adenosine inhibition of the hormonal response in the Sertoli cell is reversed by pertussis toxin. Endocrinology 1988; 122:2692.

    Article  PubMed  CAS  Google Scholar 

  48. Green A. Adenosine receptor down-regulation and insulin resistance following prolonged incubation of adipocytes with an Al adenosine receptor agonist. J Biol Chem 1987;262:15702.

    PubMed  CAS  Google Scholar 

  49. Trussell LO, Jackson MB. Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J Neurosci 1987;7:3306.

    PubMed  CAS  Google Scholar 

  50. Arend LJ, Sonnenburg WK, Smith WL, Spielman WS. AI and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP. J Clin Invest 1987;79:710.

    Article  PubMed  CAS  Google Scholar 

  51. Rossi NF, Churchill PC, Churchill MC. Pertussis toxin reverses adenosine receptor-mediated inhibition of renin secretion in rat renal cortical slices. Life Sci 1987;40:481.

    Article  PubMed  CAS  Google Scholar 

  52. Parsons WJ, Stiles GL. Heterologous desensitization of the inhibitory Al adenosine receptor-adenylate cyclase system in rat adipocytes. Regulation of both Ns and Ni. J Biol Chem 1987;262:841.

    PubMed  CAS  Google Scholar 

  53. Berman MI, Thomas CGJ, Nayfeh SN. Inhibition of thyrotropin-stimulated adenosine 3′,5′-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein. J Cyclic Nucleotide Protein Phosphor Res 1986;11:99.

    PubMed  CAS  Google Scholar 

  54. Garcia Sainz JA, Torner ML. Rat fat-cells have three types of adenosine receptors (Ra, Ri and P) Differential effects of pertussis toxin. Biochem J 1985;232:439.

    PubMed  CAS  Google Scholar 

  55. Okajima F, Katada T, Ui M. Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. J Biol Chem 1985;260:6761.

    PubMed  CAS  Google Scholar 

  56. Verghese MW, Charles L, Jakoi L, Dillon SB, Snyderman R. Role of a guanine nucleotide regulatory protein in the activation of phospholipase c by different chemoattractants. J Immunol 1987; 138:4374.

    PubMed  CAS  Google Scholar 

  57. Volpi M, Naccache PH, Molski TFP, Shefcyk J, Huang C-K, March ML, Munoz J, Becker E, Sha’afi RI. Pertussis toxin inhibits fMet-Leu-Phe but not phorbol ester-stimulated changes in rabbit neutrophils. Role of G proteins in excitation-response coupling. Proc Natl Acad Sci USA 1985;82:2708.

    Article  PubMed  CAS  Google Scholar 

  58. Verghese MW, Smith CD, Snyderman R. Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca+ + mobilization and cellular responses by leukocytes. Biochem Biophys Res Commun 1985;127:450.

    Article  PubMed  CAS  Google Scholar 

  59. Okajima F, Ui M. ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. J Biol Chem 1984;259:13863.

    PubMed  CAS  Google Scholar 

  60. Becker EL, Kermode JC, Naccache PH, Yassin R, Marsh ML, Munoz JJ, Sha’afi RI. The inhibition of neutrophil granule enzyme secretion and Chemotaxis by pertussis toxin. J Cell Biol 1985;100:1641.

    Article  PubMed  CAS  Google Scholar 

  61. Ohta H, Okajima F, Ui M. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca-I- -I- mobilization in guinea pig neutrophils. J Biol Chem 1985;260:15771.

    PubMed  CAS  Google Scholar 

  62. Goldman DW, Chang F-H, Gifford LA, Goetzl EJ, Bourne HR. Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes. J Exp Med 1985;162:145.

    Article  PubMed  CAS  Google Scholar 

  63. Lad PM, Olson CV, Smiley PA. Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin. Proc Natl Acad Sci USA 1985;82:869.

    Article  PubMed  CAS  Google Scholar 

  64. Bokoch GM, Gilman AG. Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 1984;39:301.

    Article  PubMed  CAS  Google Scholar 

  65. Snyderman R, Smith CD, Verghese MW. Model for leukocyte regulation by chemoattractant receptors: roles of a guanine nucleotide regulatory protein and polyphosphoinositide metabolism. J Leuk Biol 1986;40:785.

    CAS  Google Scholar 

  66. Krause K-H, Schlegel W, Wollheim CB, Andersson T, Waldvogel FA, Lew DP. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients and cellular activation. J Clin Invest 1985;76:1348.

    Article  PubMed  CAS  Google Scholar 

  67. Lad PM, Olson CV, Grewal IS, Scott SJ. A pertussis toxin-sensitive GTP-binding protein in the human neutrophil regulates multiple receptors, calcium mobilization and lectin-induced capping. Proc Natl Acad Sci USA 1985;82:8643.

    Article  PubMed  CAS  Google Scholar 

  68. Maenhaut C, Van Sande J, Libert F, Abramowicz M, Parmentier M, Vanderhaegen J-J, Dumont JE, Vassart G, Schiffmann S. RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Comm 1990; 173:1169.

    Article  PubMed  CAS  Google Scholar 

  69. Iannone MA, Wolberg G, Zimmerman TP. Chemotactic peptide induces cAMP elevation in human neutrophils by amplification of the adenylate cyclase response to endogenously produced adenosine. J Biol Chem 1989;264:20177.

    PubMed  CAS  Google Scholar 

  70. Cronstein BN, Haines KA, Kolasinski SL, Reibman J. Occupancy of Galpha s-linked receptors uncouples chemoattractant receptors from their stimulus-transduction mechanisms in the neutrophil. Blood 1992;80:1052.

    PubMed  CAS  Google Scholar 

  71. Cronstein BN, Haines KA. Adenosine A2 receptor occupancy does not affect “triggering” but inhibits “activation” of human neutrophils by a mechanism independent of actin filament formation. Biochem J 1992;281:631.

    PubMed  CAS  Google Scholar 

  72. Walker BAM, Hagenlocker BE, Douglas VK, Ward PA. Effects of adenosine on inositol 1,4,5-trisphosphate formation and intracellular calcium changes in formyl-met-leu-phe-stimulated human neutrophils. J Leuk Biol 1990;48:281.

    CAS  Google Scholar 

  73. Ward PA, Cunningham TW, Walker BAM, Johnson KJ. Differing calcium requirements for regulatory effects of ATP, ATPgS and adenosine on O2- responses of human neutrophils. Biochem Biophys Res Commun 1988;154:746.

    Article  PubMed  CAS  Google Scholar 

  74. Laghi Pasini F, Capecchi PL, Pasqui AL, Ceccatelli L, Mazza S, Gistri A, Di Perri T. Adenosine system and cell calcium translocation: interference of calcium channel blockers. Exp Gerontol 1990;25:383.

    Article  PubMed  CAS  Google Scholar 

  75. Tsuruta S, Ito S, Mikawa H. Adenosine inhibits divalent cation influx across human neutrophil plasma membrane via surface adenosine A2 receptors. Cellular Signalling 1992;4:543.

    Article  PubMed  CAS  Google Scholar 

  76. Fechheimer M, Zigmond SH. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil 1983;3:349.

    Article  PubMed  CAS  Google Scholar 

  77. Jesaitis AJ, Naemura JR, Sklar LA, Cochrane CG, Painter RG. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol 1984;98:1378.

    Article  PubMed  CAS  Google Scholar 

  78. Jesaitis AJ, Bokoch GM, Tolley JO, Allen RA. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins. J Cell Biol 1988;107:921.

    Article  PubMed  CAS  Google Scholar 

  79. Zigmond SH, Tranquillo AW. Chemotactic peptide binding by rabbit polymorphonuclear leukocytes: presence of two compartments having similar affinities but different kinetics. J Biol Chem 1986;261:5283.

    PubMed  CAS  Google Scholar 

  80. Jesaitis AJ, Tolley JO, Allen RA Receptor-cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J Biol Chem 1986;261:13662.

    PubMed  CAS  Google Scholar 

  81. Jesaitis AJ, Tolley JO, Bokoch GM, Allen RA. Regulation of chemoattractant receptor interaction with transducing proteins by organizational control in the plasma membrane of human neutrophils. J Cell Biol 1989; 109:2783.

    Article  PubMed  CAS  Google Scholar 

  82. Cassimeris L, McNeill H, Zigmond SH. Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J Cell Biol 1990;110:1067.

    Article  PubMed  CAS  Google Scholar 

  83. Cream JJ, Pole DS. The effect of methotrexate and hydroxyurea on neutrophil Chemotaxis. Br J Derm 1980;102:557.

    Article  CAS  Google Scholar 

  84. Tsuruta S, Ito S, Mikawa H. Effects of adenosine and its analogues on actin polymerization in human polymorphonuclear leucocytes. Clin Exp Pharmacol Physiol 1993;20:89.

    Article  PubMed  CAS  Google Scholar 

  85. Newby AC, Holmquist CA, Illingworth J, Pearson JD. The control of adenosine concentration in polymorphonuclear leucocytes, cultured heart cells and isolated perfused heart from the rat. Biochem J 1983;214:317.

    PubMed  CAS  Google Scholar 

  86. van Waeg G, Van den Berghe G. Purine catabolism in polymorphonuclear neutrophils; phorbol myristate acetate-induced accumulation of adenosine owing to inactivation of extracellularly released adenosine deaminase. J Clin Invest 1991;87:305.

    Article  PubMed  Google Scholar 

  87. Cronstein BN, Eberle MA, Gruber HE, Levin RI. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 1991;88:2441.

    Article  PubMed  CAS  Google Scholar 

  88. Cronstein BN, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 1993;92:2675.

    Article  PubMed  CAS  Google Scholar 

  89. Gruber HE, Hoffer ME, McAllister DR, Laikind PK, Lane TA, Schmid-Schoenbein GW, Engler RL. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside: effects on flow, granulocytes and injury. Circulation 1989;80:1400.

    Article  PubMed  CAS  Google Scholar 

  90. Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ. 5′-Adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest 1993;91:2320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cronstein, B.N. (1996). Adenosine and the Polymorphonuclear Leukocyte Function, Mechanisms and Production. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics