Rapid Learning Models

  • Robert J. Jannarone


Chapter 4 ties the rapid learning neuro-computing system to related neural network, mental process, and statistical estimation models. Section 4.1 presents key rapid learning neuro-computing system components. Section 4.2 describes a corresponding biological neural network model, section 4.3 describes a closely related mental process model, and section 4.4 describes a corresponding statistical model.


Connection Weight Kernel Module Input Measurement Input Line Rapid Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Jannarone, “Conjunctive Item Response Theory: Cognitive Research Prospects,” in M. Wilson (Ed), Objective Measurement: Theory into Practice, Vol.1, Ablex, Norwood, NJ, pp. 211 – 236, 1992.Google Scholar
  2. 2.
    R.J. Jannarone, “A Concurrent Learning and Performance Information Processing System,” RCNS Technical Report Series, No. PAT94-01, Rapid Clip Neural Systems, Inc., Atlanta, GA, 1994.Google Scholar
  3. 3.
    R.J. Jannarone, “Concurrent Learning and Performance Analog Chip Design,” RCNS Technical Report Series, No. PAT96-01, Rapid Clip Neural Systems, Inc., Atlanta, GA, 1996.Google Scholar
  4. 4.
    C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA, 1995.Google Scholar
  5. 5.
    C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.Google Scholar
  6. 6.
    K. Naik, A Concurrent Information Processing Parallel Design Analysis, Unpublished Masters Thesis, University of South Carolina, 1996.Google Scholar
  7. 7.
    J. A. Deutsch & D. Deutch, Physiology Psychology, Dorsey, Homewood, IL, 1973.Google Scholar
  8. 8.
    D.E. Rumelhert & W.L. McClelland (Eds), Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, 1986.Google Scholar
  9. 9.
    P. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Re-inhold, New York, 1993.MATHGoogle Scholar
  10. 10.
    H. Gleitman, Basic Psychology, W W. Norton, New York, 1983.Google Scholar
  11. 11.
    G. Tatman, R.J. Jannarone, & C M. Amick, “Neural Networks for Speech Recognition: Contrasts Between a Traditional and a Parametric Approach,” Unpublished Technical Report, Machine Cognition Laboratory, University of South Carolina, 1994.Google Scholar
  12. 12.
    R.D. Hawkins, T. Abrams, T.J. Carew, & E.R. Kandel, “A Cellular Mechanism of Classical Conditioning in Aplysia: Activity-Dependent Amplification of Presynaptic Facilitation,” Science, Vol. 219, pp. 400 – 405, 1983.CrossRefGoogle Scholar
  13. 13.
    S. Coren, C. Porac, & L.M. Ward, Sensation and Perception, Academic Press, New York, 1978.Google Scholar
  14. 14.
    J.M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications and Control, Prentice-Hall PTR, Englewood Cliffs, NJ, 1995.MATHGoogle Scholar
  15. 15.
    E.L. Lehmann, Theory of Point Estimation, Wiley, New York, 1983.MATHGoogle Scholar
  16. 16.
    E.L. Lehmann, Testing Statistical Hypotheses, 2nd Edn., Wiley, New York, 1986.MATHGoogle Scholar
  17. 17.
    P.J. Bickel & K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, Holden-Day, San Francisco, 1977.MATHGoogle Scholar
  18. 18.
    R.J. Jannarone,“The ABC of Measurement,” Unpublished Technical Report, Machine Cognition Laboratory, University of South Carolina, 1994.Google Scholar
  19. 19.
    T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd Edn., Wiley, New York, 1984.MATHGoogle Scholar
  20. 20.
    H. Scheffé, The Analysis of Variance, Wiley, New York, 1983.Google Scholar
  21. 21.
    D.R. Cox, The Analysis of Binary Data, London, Methuen, 1966.Google Scholar
  22. 22.
    Y.M.M. Bishop, S.E. Fienberg, & P.W. Holland, Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, MA, 1975.MATHGoogle Scholar
  23. 23.
    L.A. Goodman, Analyzing Qualitative/Categorical Data, Jay Magidson, Cambridge, MA, 1978.MATHGoogle Scholar
  24. 24.
    R. J. Jannarone, K.F. Yu, and Y. Takefuji, “Conjunctoids: Statistical Learning Modules for Binary Events,” Neural Networks, Vol. 1, pp. 325 – 337, 1988.CrossRefGoogle Scholar
  25. 25.
    R.J. Jannarone, “Conjunctive Item Response Theory Kernels,” Psychometrika, Vol. 51, pp. 449 – 460, 1986.CrossRefGoogle Scholar
  26. 26.
    R.J. Jannarone, “Locally dependent models: conjunctive item response theory,” In W.J. van der Linden & R.K. Hambleton III (Eds.), Handbook of Modern Item Response Theory, Springer-Verlag, New York, pp. 465 – 480, 1996.Google Scholar
  27. 27.
    R.J. Jannarone, K.F. Yu, and J.E. Laughlin, “Easy Bayes Estimation for Rasch Type Models,” Psychometrika, Vol. 55, pp. 449 – 460, 1990.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Robert J. Jannarone
    • 1
  1. 1.Rapid Clip Neural Systems, Inc.AtlantaUSA

Personalised recommendations