Physiological and Ecological Aspects of Hypothermia

  • Randi Eidsmo Reinertsen

Abstract

Daily cycles of body temperature in pigeons were discovered in 1843 by Chossat (Aschoff 1970). It is now known that a daily rhythm of 1–2°C in body temperature occurs in virtually all birds, and that many small birds exhibit an extreme decline in nocturnal body temperature (Prinzinger et al. 1991). Hypothermia is defined as any core temperature below the set-range specified for the normal active state of the species, while torpor is defined as a state of inactivity and reduced responsiveness to stimuli (e.g., during hypothermia, hibernation, or estivation) (Commission for Thermal Physiology of IUPS, 1987). Since the criteria for torpor are usually met at core temperatures below 30°C, hypothermia is described in one of two forms: nocturnal hypothermia, with a shallow depression of body temperature to 30–38°C, and torpor, in which body temperature ranges between 4°C to 30°C. Nocturnal hypothermia does not include the normal, sleep-related reduction of body temperature.

Keywords

Cellulose Migration Respiration Adenosine Diesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreyev, A. Y., T. O. Bondareva, V I. Dedukhova, E. N. Mokhova, V P. Skulachev, and N.I. Volkov. 1988. Carboxyatractylate inhibits the uncoupling of free fatty acids. FEBS Lett 226:265–269.PubMedCrossRefGoogle Scholar
  2. Aschoff, J. 1970. Circadian rhythms of activity and body temperature. In Physiological and Behavioral Temperature Regulation, eds. J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk, pp. 905–920. Thomas, Springfield, IL.Google Scholar
  3. Aulie, A. and H. J. Grav. 1979. Effect of cold acclimation on the oxidative capacity of skeletal muscle and liver in young bantam chicks. Comp. Biochem. Physiol. 62A:335–338.CrossRefGoogle Scholar
  4. Barré H. and J.-L. Rouanet. 1983. Calorigenic effect of glucagon and catecholamines in King Penguin chicks. Am. J. Physiol 244:R758–R763.PubMedGoogle Scholar
  5. Barré H., F. Cohen-Adad, C. Duchamp, and J.-L. Rouanet. 1986. Multiocular adipocytes from Muscovy ducklings differentiated in response to cold acclimation. J. Physiol Lond. 375:27–38.PubMedGoogle Scholar
  6. Barré H., F. Cohen-Adad, and J. L. Rouanet. 1987. Two daily glucagon injections induce nonshivering thermogenesis in Muscovy ducklings. Am. J. Physiol. 249:E616–E620.Google Scholar
  7. Barré H., A. Geloen, J. Chatonnet, A. Dittmar, and J.-L. Rouanet. 1985. Potentiated muscular thermogenesis in cold-acclimated Muscovy duckling. Am. J. Physiol 249: R533–R538.PubMedGoogle Scholar
  8. Bartholomew, G. A. and C. H. Trost. 1970. Temperature regulation in the Speckled Mouse-bird, Colius striatus. Condor 12:141–146.CrossRefGoogle Scholar
  9. Bartholomew, G. A., T. R. Howell, and T. J. Cade. 1957. Torpidity in the White-throated Swift, Anna Hummingbird and Poor-will. Condor 59:145–155.CrossRefGoogle Scholar
  10. Bartholomew, G. A., C. M. Vleck, and T. L. Bucher. 1983. Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiol Zool. 56:370–379.Google Scholar
  11. Bech, C. and R. E., Reinertsen, eds. 1989. Physiology of Cold Adaptation in Birds, NATO ASI Series, vol. 173, 384pp. Plenum, New York.Google Scholar
  12. Bech, C., A. S. Abe, J. F. Steffensen, M. Berger, and J. E. P. W. Bicudo. 1994. Multiple nightly torpor bouts in hummingbirds. In Integrative and Cellular Aspects of Autonomic Functions: Temperature and Osmoregulation, eds. K. Pleschka and R. Gerstberger, pp. 323–328. John Libbey Eurotext, Paris.Google Scholar
  13. Berger, M. and K. Johansen. 1989. The respiratory pattern and expiratory gas concentrations in torpid hummingbirds Colibri coruscans. In Physiology of Cold Adaptation in Birds, eds. C. Bech and R. E. Reinertsen, pp. 179–186. Plenum, New York.Google Scholar
  14. Berger, R. J. and N. H. Phillips. 1993. Sleep and energy conservation. NIPS 8:276–281.Google Scholar
  15. Biebach, H. 1977. Reduktion des Energiestoffwechsels der Korpertemperatur hungernder Amseln (Turdus merula), J. Ornithol. 118:294–300.CrossRefGoogle Scholar
  16. Brigham, R. M. 1992. Daily torpor in a free-ranging goatsucker, the Common Poorwill (Phalaenoptilus nuttallii). Physiol Zool. 65:457–472.Google Scholar
  17. Bucher, T. L. and M. A. Chappell. 1992. Ventilatory and metabolic dynamics during entry into and arousal from torpor in Selasphorus hummingbirds. Physiol Zool. 65:978–993.Google Scholar
  18. Calder, W. A. and J. Booser. 1973. Hypothermia of Broad-tailed Hummingbirds during incubation in nature with ecological correlations. Science 180:751–753.PubMedCrossRefGoogle Scholar
  19. Calder, W. A. and J. R. King. 1974. Thermal and caloric relations in birds. In Avian Biology vol. 4, eds. D. S. Farner and J. R. King, pp. 259–413. Academic Press, New York.Google Scholar
  20. Carey, C. 1993. Does nonshivering thermogenesis exist in birds? In Life in the Cold: Ecological, Physiological and Molecular Mechanisms, eds. C. Carey, G. L. Florant, B. A. Wunder and B. Hortwitz, pp. 527–528. Westview Press, Boulder, Colorado.Google Scholar
  21. Carey, C., G. L. Florant, B. A. Wunder, and B. Horwitz. 1993. Life in the Cold: Ecological, Physiological and Molecular Mechanisms, 575pp. Westview Press, Boulder, Colorado.Google Scholar
  22. Carpenter, F. L. 1972. Torpidity in the Andean Hillstar Hummingbird (Oreotrochilus estella estella). Cooper Ornithol. Soc. Abstr. Ann. Meet. 43, 28pp.Google Scholar
  23. Carpenter, F. L. 1974. Torpor in an Andean hummingbird: its ecological significance. Science 183:545–547.PubMedCrossRefGoogle Scholar
  24. Carpenter, F. L. and M. A. Hixon. 1988. A new function for torpor: fat conservation in a wild migrant hummingbird. Condor 90:373–378.CrossRefGoogle Scholar
  25. Chaplin, S. B. 1976. The physiology of hypothermia in the Black-Capped Chickadee, Parus atricapillus. J. Comp. Physiol. 112B:335–344.Google Scholar
  26. Chaplin, S. B., D. A. Diesel, and J. A. Kasparie. 1984. Body temperature regulation in Red- tailed Hawks and Great Horned Owls; responses to air temperature and food deprivation. Condor 86:175–181.CrossRefGoogle Scholar
  27. Commission for Thermal Physiology of the International Union of Physiological Sciences, The. 1987. Glossary of terms for thermal physiology, 2nd. ed. Pflügers Arch. 410:567–587.Google Scholar
  28. Conolly, E., J. Nedergaard, and B. Cannon. 1989. Shivering and nonshivering thermogenesis in birds; a mammalian view. In Physiology of Cold Adaptation in Birds, eds. C. Bech and R. E. Reinertsen, pp. 37–48. Plenum, New York.Google Scholar
  29. Csada, R. D. and R. M. Brigham. 1994. Reproduction constrains the use of daily torpor by free-ranging Common Poorwills (Phalaenoptilus nuttallii) (Aves Caprimulgidae). J. Zool., Lond. 234:209–216.Google Scholar
  30. Dawson, W. R. and C. D. Fisher. 1969. Responses to temperature in the Spotted Nightjar. Condor 71:49–53.CrossRefGoogle Scholar
  31. Dawson, W. R. and J. W. Hudson. 1970. Birds. In Invertebrates and Nonmammalian Verte-brates; Comparative Physiology of Thermoregulation, vol. 1, ed. G. C. Whittow, pp. 223–310. Academic Press, New York.Google Scholar
  32. Dawson, W. R., R. L. Marsh, and M. E. Yacoe. 1983. Metabolic adjustments of small passerine birds for migration and cold. Am. J. Physiol. 245:R755–R767.PubMedGoogle Scholar
  33. Duchamp, C., H. Barré D. Delage, J.-L. Rouanet, F. Cohen-Adad, andY. Minaire. 1989. Nonshivering thermogenesis and adaptation to fasting in King Penguin chicks. Am. J. Physiol. 257:R744–R751.PubMedGoogle Scholar
  34. Duchamp, C., F. Cohen-Adad, J. L. Rouanet, and H. Barré. 1992. Histochemical arguments for muscular non-shivering thermogenesis in Muscovy ducklings. J. Physiol. Lond. 457:27–45.PubMedGoogle Scholar
  35. El Halawani, M. E., W. O. Wilson, and R. E. Burger. 1970. Cold-acclimation and the role of catecholamines in body temperature regulation in male Leghorns. Poultry Sci. 49:621–632.Google Scholar
  36. Fisher, K. C., A. R. Dawe, C. P. Lyman, E. Sconbaum, F. E. South, eds. 1967. Mammalian Hibernation, vol. III, 535pp. Oliver & Boyd, Edinburgh.Google Scholar
  37. Florant, G. L. and H. C. Heller. 1977. CNS regulation of body temperature in euthermic and hibernating marmots Marmota flaviventris. Am. J. Physiol. 1:R203–R208.Google Scholar
  38. Florant, G., B. M. Turner, and H. C. Heller. 1978. Temperature regulation during wakeful-ness, sleep and hibernation in marmots. Am. J. Physiol. 235:R82–R88.PubMedGoogle Scholar
  39. Foster, D. O. and M. L. Frydman. 1978. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can. J. Physiol. Pharmacol. 56:110–122.Google Scholar
  40. Foster, D. O. and M. L. Frydman. 1979. Tissue distribution of cold induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by non- shivering thermogenesis. Can. J. Physiol. Pharmacol. 57:257–270.PubMedCrossRefGoogle Scholar
  41. French, A. 1993. Hibernation in birds: comparisons with mammals. In Life in the Cold: Ecological, Physiological and Molecular Mechanisms, eds. C. Carey, G. L. Florant, B. A. Wunder, and B. Horwitz, pp. 43–53. Westview Press, Boulder, Colorado.Google Scholar
  42. Geiser, F. 1988. Reduction of metabolism during hibernation and daily torpor in mammals and birds; temperature effect or physiological inhibition? J. Comp. Physiol. 158:25–37.Google Scholar
  43. Glotzbach, S. F. and H. C. Heller. 1976. Central nervous regulation of body temperature during sleep. Science 194:537–539.PubMedCrossRefGoogle Scholar
  44. Graf, R. 1980a. Diurnal changes of thermoregulatory functions in pigeons. I. Effector mechanisms. Pflügers Arch. 386:173–179.PubMedCrossRefGoogle Scholar
  45. Graf, R. 1980b. Diurnal changes of thermoregulatory functions in pigeons. II. Spinal thermosensitivity. Pflügers Arch. 386:181–185.PubMedCrossRefGoogle Scholar
  46. Graf, R., S. Krishna, and H. C. Heller. 1989. Regulated nocturnal hypothermia induced in pigeons by food deprivation, Am. J. Physiol. 256:R733–R738.PubMedGoogle Scholar
  47. Hainsworth, F. R., B. G. Collins, and L. L. Wolf. 1977. The function of torpor in hummingbirds. Physiol. Zool. 50:215–222.Google Scholar
  48. Hayward J. S. 1968. The magnitude of noradrenaline-induced thermogenesis in the bat (Myotis lucifugus) and its relation to arousal from hibernation. Can. J. Physiol Pharmacol. 46:713–718.PubMedCrossRefGoogle Scholar
  49. Hayward, J. S. and P. A. Lisson. 1992. Evolution of brown fat: its absence in marsupials and monotremes. Can. J. Zool. 70:171–179.CrossRefGoogle Scholar
  50. Heldmaier, G. 1978. Rewarming rates from torpor in mammals and birds. J. Therm. Biol 3:100–101.CrossRefGoogle Scholar
  51. Heller, H. C. 1987. Sleep and hypometabolism. Can. J. Zool. 66:61–69.CrossRefGoogle Scholar
  52. Heller, H. C. 1989. Sleep, hypometabolism and torpor in birds. In Physiology of Cold Adaptation in Birds, eds. C. Bech and R. E. Reinertsen, pp. 231–245. Plenum Press, New York.Google Scholar
  53. Heller, H. C. and G. W. Colliver. 1974. CNS regulation of body temperature. Am. J. Physiol 227:583–589.PubMedGoogle Scholar
  54. Heller, H. C., R. Graf, and W. Rautenberg. 1983. Circadian and arousal state influences on thermoregulation in the pigeon. Am. J. Physiol. 245:R321–R328.PubMedGoogle Scholar
  55. Heller, H. C., X. J. Musacchia, and L. C. H. Wang, eds. 1986. Living in the Cold, 587pp. Elsevier, Amsterdam.Google Scholar
  56. Heller, H. C., J. M. Walker, G. L. Florant, S. F. Glotzbach, and R. J. Berger. 1978. Electro-physiological and thermoregulatory homologies. In Strategies in Cold, eds. L. C. H. Wang and J. W. Hudson pp. 225–265. Academic Press, New York.Google Scholar
  57. Heinrich, B. and G. A. Bartholomew. 1971. An analysis of pre-flight warm-up in the sphinx moth Manduca sexta. J. Exp. Biol. 55:223–239.Google Scholar
  58. Henderson, D., M. Mercedes Fort, M. H. Rashotte, and R. R Henderson. 1992. Ingestive behavior and body temperature of pigeons during long-term cold exposure. Physiol Behav. 52:455–469.PubMedCrossRefGoogle Scholar
  59. Hiebert, S. M. 1990. Energy costs and temporal organization of torpor in the Rufous hummingbird (Selasphorus rufus). Physiol Zool. 63:1082–1097.Google Scholar
  60. Hiebert, S. M. 1991. Seasonal differences in the response of Rufous Hummingbirds to food restriction: body mass and the use of torpor. Condor 93:526–537.CrossRefGoogle Scholar
  61. Hiebert, S. M. 1992. Time-dependent threshold for torpor initiation in the Rufous Hummingbird (Selasphorus rufus). J. Comp. Physiol. 162:249–255.Google Scholar
  62. Hohtola, E., R. Hissa, A. Pyörnilä, H. Rintamäki, and S. Saarela. 1991. Nocturnal hypothermia in fasting quail: the effect of ambient temperature. Physiol Behav. 49:563–567.PubMedCrossRefGoogle Scholar
  63. Howell, T. A. and G. A. Bartholomew. 1959. Further experiments on torpidity in the Poor-will. Condor 61:180–185.CrossRefGoogle Scholar
  64. Hulbert, A. J. and J. W. Hudson. 1976. Thyroid function in a hibernator Spermophilus tride- cemlineatus. Am. J. Physiol. 230:1211–1216.PubMedGoogle Scholar
  65. Jaeger, E. C. 1949. Further observations on the hibernation of the Poor-will. Condor 51:105–109.CrossRefGoogle Scholar
  66. Jensen, C. and C. Bech. 1992. Oxygen consumption and acid-base balance during shallow hypothermia in pigeon. Respir. Physiol. 88:193–204.PubMedCrossRefGoogle Scholar
  67. Johnston, D. W. 1971. The absence of brown adipose tissue in birds. Comp. Biochem. Physiol. 40A: 1107–1108.CrossRefGoogle Scholar
  68. Ketterson, E. D. and J. R. King. 1977. Metabolic and behavioural responses to fasting in the White-crowned Sparrow (Zonotrichia leucophrys gambelii). Physiol. Zool. 50:115–129.Google Scholar
  69. Kilduff, T. S., B. Krilowicz, W. K. Milsom, L. Trachsel, and L. C. H. Wang. 1993. Sleep and mammalian hibernation: Homologous adaptations and homologous processes? Sleep 16:372–386.PubMedGoogle Scholar
  70. Kissner, K. J. and R. M. Brigham. 1993. Evidence for the use of torpor by incubating and brooding Common Poorwills Phalaenoptilus nuttallii. Ornis Scand. 24:333–334.CrossRefGoogle Scholar
  71. Kondo, N. 1987. Electrophysiological effects of Ca antagonists, tetrodotoxin, ((Ca))0 and ((Na))0 on myocardium of hibernating chipmunks: possible involvement of Na-Ca exchange mechanism. Br. J. Pharmacol. 91:315–319.PubMedGoogle Scholar
  72. Krilowicz, B. L. 1985. Ketone body metabolism in a ground squirrel during hibernation and fasting. Am. J. Physiol. 249:R462–R470.PubMedGoogle Scholar
  73. Krüger, K., R. Prinzinger, and K. L. Schuchmann. 1982. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol 73A:679–689.CrossRefGoogle Scholar
  74. Lasiewski, R. C. 1963. Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiol Zool. 36:122–140.Google Scholar
  75. Lasiewski, R. C. 1964. Body temperature, heart and breathing rate, and evaporative water loss in hummingbirds. Physiol Zool. 37:212–223.Google Scholar
  76. Lasiewski, R. C. and R. J. Lasiewski. 1967. Physiological responses of the Blue-throated and Rivoli’s Hummingbirds. Auk 84:34–48.Google Scholar
  77. Lasiewski, R. C., W. W. Weathers, and M. H. Bernstein. 1967. Physiological responses of the Giant Hummingbird Patagona gigas. Comp. Biochem. Physiol. 23:797–813.PubMedCrossRefGoogle Scholar
  78. Ligon, J. D. 1970. Still more responses of the Poor-will to low temperatures. Condor 72:496–497.CrossRefGoogle Scholar
  79. Luckenbill, L. M. and A. S. Cohen. 1966. The association of lipid droplets with cytoplasmic filaments in avian subsynovial adipose cells. J. Cell Biol. 31:159–179.CrossRefGoogle Scholar
  80. Lyman, C. P. and A. R. Dawe, eds. 1960. Mammalian Hibernation, Proceedings of the first international symposium on natural mammalian hibernation, Bull. Mus. Comp. Zool Harv. 124:549pp.Google Scholar
  81. Lyman, C. P., J. S. Willis, A. Malan, and L. C. H. Wang, eds. 1982. Hibernation and Torpor in Mammals and Birds, 317pp. Academic Press, London.Google Scholar
  82. MacMillen, R. E. and C. H. Trost. 1967. Nocturnal hypothermia in the Inca Dove Scardafella inca. Comp. Biochem. Physiol. 23:243–253.PubMedCrossRefGoogle Scholar
  83. Malan, A. 1986. pH as a control factor in hibernation. In Living in the Cold; Physiological and Biochemical Adaptations, eds. H. C. Heller, X. J. Musacchia, and L. C. H. Wang, pp. 61–70. Elsevier, New York.Google Scholar
  84. Malan, A. and B. Canguilhem. eds. 1989. Living in the Cold, vol II, 525pp. John Libbey Eurotext, Paris.Google Scholar
  85. Marsh, R. 1993. Does regulated nonshivering thermogenesis exist in birds? in Life in the Cold; Ecological, Physiological and Molecular Mechanisms, eds. C. Carey, G. L. Florant, B. A. Wunder, and B. Horwitz, pp. 535–538. Westview Press, Boulder, Colorado.Google Scholar
  86. Marshall, J. T. 1955. Hibernation in captive goatsuckers. Condor 57:129–134.CrossRefGoogle Scholar
  87. Musacchia, X. J. and L. Jansky, eds. 1981. Survival in the Cold. Elsevier, Amsterdam.Google Scholar
  88. Nestler, J. R. 1990. Relationship between respiratory quotient and metabolic rate during entry to and arousal from daily torpor in deer mice (Peromyscus maniculatus). Physiol Zool. 63:504–515.Google Scholar
  89. Oliphant, L. W. 1983. First observation of brown fat in birds. Condor 85:350–354.CrossRefGoogle Scholar
  90. Olson, J. M., W. R. Dawson, and J. J. Camilliere. 1988. Fat from Black-Capped Chickadees; avian brown adipose tissue? Condor 90:529–537.CrossRefGoogle Scholar
  91. Ostheim, J. and W. Rautenberg. 1989. Energy expenditure at food limited conditions in pigeons. In Thermal Physiology, ed. J. B. Mercer, pp. 707–712. Elsevier, Amsterdam.Google Scholar
  92. Peiponen, V A. 1966. The diurnal heterothermy of the Nightjar (Caprimulgus europaeus L.). Ann. Acad. Sci. Fennicae, Ser. A IV 101:1–35.Google Scholar
  93. Peiponen, V A. 1970. Body temperature fluctuations of the Night-jar (Caprimulgus e. europaeus L.) in the light conditions of Southern Finland, Ann. Zool Fennici. 7:239–250.Google Scholar
  94. Phillips, N. H. and R. J. Berger. 1988. Caloric and photic modulation of circadian rhythms of body temperature, metabolism and sleep. In Living in the Cold, vol. II, eds. A. Malan and B. Canguilhem, pp. 419–427. John Libbey Eurotext, Paris.Google Scholar
  95. Phillips, N. H. and R. J. Berger. 1991. Regulation of body temperature, metabolic rate, and sleep in fasting pigeons diurnally infused with glucose or saline, J. Comp. Physiol. 161B:311–318.Google Scholar
  96. Prinzinger, R. and K. Siedle. 1988. Ontogeny of metabolism, thermoregulation and torpor in the House Martin Delichon u. urbica (L.) and its ecological significance. Oecologica 76:307–312.CrossRefGoogle Scholar
  97. Prinzinger, R., R. Goppel, A. Lorenz, and E. Kulzer. 1981. Body temperature and metabolism in the Red-backed Mousebird (Colius castanotus) during fasting and torpor. Comp. Biochem. Physiol. 69A:689–692.CrossRefGoogle Scholar
  98. Prinzinger, R., A. Pressmar, and E. Schleucher. 1991. Body temperature in birds. Comp. Biochem. Physiol. 99A:499–506.CrossRefGoogle Scholar
  99. Rashotte, M. E. and D. Henderson. 1988. Coping with rising food costs in a closed economy. Feeding behavior and nocturnal hypothermia in pigeons. J. Exp. Anal. Behav. 50:441–456.Google Scholar
  100. Rashotte, M. E. and J. M. O’Connell. 1986. Pigeons reactivity to food and Pavlovian signals for food in a closed economy: effects of feeding time and signal reliability, J. Exp. Psychol. 12:235–247.Google Scholar
  101. Rautenberg, W. R., R. Necker, and B. May. 1972. Thermoregulatory responses of the pigeon to changes of the brain and spinal cord temperatures. Pflügers Arch. 338:31–42.PubMedCrossRefGoogle Scholar
  102. Reinertsen, R. E. 1983. Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subarctic regions; a review. Polar Research 1:269–284.CrossRefGoogle Scholar
  103. Reinertsen, R. E. 1985. Energy strategies in the cold; Metabolic and thermoregulatory adaptations in small northern birds, Ph.D. diss. University of Trondheim, Trondheim.Google Scholar
  104. Reinertsen, R. E. and C. Bech. 1994. Hypothermia in pigeons; relating body temperature regulation to the gastrointestinal system. Naturwissenschaften 81:133–136.PubMedCrossRefGoogle Scholar
  105. Reinertsen, R. E. and S. Haftorn. 1983. Nocturnal hypothermia and metabolism in the Willow Tit, Parus montanus, at 63°N. J. Comp. Physiol 151B: 109–118.Google Scholar
  106. Reinertsen, R. E. and S. Haftorn. 1984. The effect of short time fasting on the metabolism and nocturnal hypothermia in the Willow Tit (Parus montanus). J. Comp. Physiol. 154B:23–28.Google Scholar
  107. Reinertsen, R. E. and S. Haftorn. 1986. Different metabolic strategies of northern birds for nocturnal survival. J. Comp. Physiol. 156B:655–653.Google Scholar
  108. Saarela, S. and G. Heldmaier. 1987. Effect of photoperiod and melatonin on cold resistance, thermoregulation and shivering/nonshivering thermogenesis in Japanese quail. J. Comp. Physiol 157B:625–633.Google Scholar
  109. Shapiro, C. J. and W. W. Weathers. 1981. Metabolic and behavioral responses of American Kestrels to food deprivation. Comp. Biochem. Physiol. 68A: 111–114.CrossRefGoogle Scholar
  110. Simon, E., F.-K. Pierau, and D. C. M. Taylor. 1986. Central and peripheral thermal control of effectors in homeothermic temperature. Physiol Rev. 66:235–300.PubMedCrossRefGoogle Scholar
  111. South, F. E., J. P. Hannon, J. S. Willis, E. T. Pengelley, and N. R. Alpert, eds. 1972. Hibernation and Hypothermia: Perspectives and Challenges, 743pp. Elsevier, Amsterdam.Google Scholar
  112. Suomalainen, P., ed. 1964. Mammalian Hibernation II, Ann. Acad. Scien. Fenn. Ser. A IV, Biologica, vol. 71.Google Scholar
  113. Trachsel, L., D. M. Edgar, and H. C. Heller. 1991. Are ground squirrels sleep deprived during hibernation? Am. J. Physiol. 260:R1123–R1129.PubMedGoogle Scholar
  114. Walker, J. M. and R. J. Berger. 1980. Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. In Progress in Brain Research, vol. 53, Adaptive capabilities of the nervous system, eds. P. S. McConnell, H. J. Romijn, P. E. van de Poll and M. A. Corner, pp. 255–278. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  115. Walker, J. M., A. Garber, R. J. Berger, and H. C. Heller. 1979. Sleep and estivation (shallow torpor): continuous processes of energy conservation. Science 204:1098–1100.PubMedCrossRefGoogle Scholar
  116. Walker, J. M., S. F. Glotzbach, R. J. Berger, and H. C. Heller. 1977. Sleep and hibernation in ground squirrels (Citellus spp.): electrophysiological observations. Am. J. Physiol. 233:R213–R221.PubMedGoogle Scholar
  117. Walker, L. E., J. M. Walker, J. W. Palca, and R. J. Berger. 1983. A continuum of sleep and shallow torpor in fasting doves. Science 221:194–195.PubMedCrossRefGoogle Scholar
  118. Wang, L. C. H. 1989. Ecological, physiological, and biochemical aspects of torpor in mammals and birds. In Advances in Comparative and Environmental Physiology, vol. 4, ed. L. C. H. Wang, pp. 361–401. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  119. Wang, L. C. H. and J. W. Hudson, eds. 1978. Strategies in Cold; Natural Torpidity and Thermogenesis, 441pp. Academic Press, London.Google Scholar
  120. Wingfield, J. C. 1988. Changes in reproductive function in free-living birds in direct response to environmental perturbations. In Processing of Environmental Information in Vertebrates, ed. M. H. Stetson, pp. 121–148. Springer, New York.CrossRefGoogle Scholar
  121. Wolf, L. L. and F. R. Hainsworth. 1972. Environmental influence on regulated body temperature in torpid hummingbirds. Comp. Biochem. Physiol. 41A: 167–173.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Randi Eidsmo Reinertsen

There are no affiliations available

Personalised recommendations